a2 United States Patent

Froese et al.

US010129329B2

ao) Patent No.: US 10,129,329 B2
45) Date of Patent: *Nov. 13, 2018

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(62)

(1)

(52)

APPARATUS AND METHOD FOR
DEADLOCK AVOIDANCE

Applicant: Cray Inc., Seattle, WA (US)

Inventors: Edwin L. Froese, Burnaby (CA); Eric
P. Lundberg, Eau Claire, WI (US);
Igor Gorodetsky, Coquitam (CA);
Howard Pritchard, Santa Fe, NM
(US); Charles Giefer, Secattle, WA
(US); Robert L. Alverson, Secattle, WA
(US); Duncan Roweth, Bristol (GB)

Assignee: Cray Inc., Seattle, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 576 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/881,157
Filed: Oct. 13, 2015

Prior Publication Data
US 2016/0077997 Al Mar. 17, 2016

Related U.S. Application Data

Division of application No. 13/798,074, filed on Mar.
12, 2013, now Pat. No. 9,160,607.

(58) Field of Classification Search
CPC GO6F 15/167; GO6F 9/52; GOGF 15/17381;
GOGF 8/458; GOGF 9/524; GOGF 9/54;

(Continued)

(56) References Cited
U.S. PATENT DOCUMENTS

4,891,749 A * 1/1990 Hoffman GOG6F 9/52
711/152
5,333,297 A * 7/1994 Lemaire GOG6F 9/3004
710/200

(Continued)

OTHER PUBLICATIONS

Almasi, George, et al., “Optimization of MPI Collective Commu-
nication on BlueGene/L Systems”, “ICS *05 Proceedings of the 19th
annual international conference on Supercomputing”, Jun. 20-22,
2005, pp. 253-262.

(Continued)

Primary Examiner — Philip J Chea

Assistant Examiner — Ruth Solomon

(74) Attorney, Agent, or Firm — Charles A. Lemaire;
Jonathan M. Rixen; Lemaire Patent Law Firm, PL.L.C.

(57) ABSTRACT

An improved method for the prevention of deadlock in a
massively parallel processor (MPP) system wherein, prior to
a process sending messages to another process running on a

(Continued) remote processor, the process allocates space in a deadlock-
Int. Cl avoidance FIFO. The allocated space provides a “landing
G0;$ F 1 5/167 (2006.01) zone” for requests that the software process (the application
HO4L 29/08 (2006.01) software) will subsequently issue using a remote-memory-
iued access function. In some embodiments, the deadlock-avoid-
(Continued) ance (DLA) function provides two different deadlock-avoid-
U.S. Cl ance schemes: controlled discard and persistent reservation.
CPC s HO4L 67/10 (2013.01); GOGF 8/458 In some embodiments, the software process determines
(2013.01); GO6F 9/52 (2013.01); G?g(l)j ;’/312)4 which scheme will be used at the time the space is allocated.
(Continued) 22 Claims, 6 Drawing Sheets
21
/
ﬂﬂ ENQUEUE " DEQUEUE (3;30
332
ETPOL N e
LoGIC

FIFOFILL
LEVEL
STATUS 3124
TOPARB

322
—

DEADLOCK AVOIDANCE
FIFO
3320
~

314

ALLOCATION STATUS/
MARKER NOTIFICATIONS
TOCQ +—

PER
DESCRIPTOR
MARKER
NOTIFICATION
LOGIC

US 10,129,329 B2
Page 2

Related U.S. Application Data

(60) Provisional application No. 61/724,887, filed on Now.
9, 2012, provisional application No. 61/724,891, filed
on Nov. 9, 2012.

(51) Int. CL
GOGF 8/41 (2018.01)
GOGF 9/52 (2006.01)
GOGF 9/54 (2006.01)
HO4L 12/26 (2006.01)
HO4L 12/751 (2013.01)
HO4L 12/715 (2013.01)
(52) US.CL
CPC oo GOGF 9/54 (2013.01); GOGF 15/167

(2013.01); HO4L 12/2602 (2013.01); HO4L
43/02 (2013.01); HO4L 45/02 (2013.01);
HO4L 45/04 (2013.01); HO4L 67/2842
(2013.01)
(58) Field of Classification Search
CPC GO6F 13/18; GO6F 15/17; GO6F 15/17337,
GOG6F 15/8092; GOGF 2209/505; GO6F
9/30036; GO6F 9/3877;, GO6F 9/3879;
GOG6F 9/3887; GOGF 17/30982; GOGF
13/16; GOG6F 2212/602; GO6F 3/0659;
GOG6F 2209/521; GO6F 9/3004; GOGF
9/544; GOGF 9/5016; GOGF 9/30087,
GOG6F 9/3836; GOG6F 9/3855; GOGF 9/526;
GOG6F 12/084; GO6F 12/0875; GO6F
12/00; GO6F 12/0284; GO6F 12/1027,
GOG6F 12/1072; GO6F 15/17331; GO6F
15/17343; HO4L 12/2602; HO4L 43/02,
HO4L 45/02; HO4L 45/04; HO4L 45/10;
HO4L 67/10; HO4L 67/2842; HO4L 45/06;
HO4L 45/12; HO4L 49/101; HO4L 49/205;
HO4L 49/251
USPCccoceu. 709/212, 226; 710/52, 56; 711/170
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,613,071 A * 3/1997 Rankin ... GOG6F 12/0284

5,940,282 A * 8/1999 Oglesbee HO2M 1/10
307/151

5,940,828 A * 8/1999 Anaya GOG6F 9/52

6,016,510 A 1/2000 Quattromani et al.

6,101,420 A 8/2000 Van Doren et al.

6,738,871 B2* 5/2004 Van Huben GO6F 15/17381
711/124

6,751,698 B1* 6/2004 Deneroff GO6F 15/17343
710/317

6,857,004 Bl 2/2005 Howard et al.
6,925,547 B2* 8/2005 Scottcccconen.. GO6F 12/1072
370/389
6,981,074 B2 12/2005 Oner et al.
7,219,178 B2 5/2007 Harris et al.
7,443,869 B2 10/2008 Solomon et al.
7,650,434 B2 1/2010 Blumrich et al.
7,958,182 B2* 6/2011 Arimilli GO6F 15/17381
709/201
7,958,183 B2* 6/2011 Arimilli GO6F 15/17381
709/201
8,239,866 B2* 82012 Carrieccccoevrnnne. GO6F 9/5027
711/147
8,458,267 B2 6/2013 Chen et al.
8,924,656 Bl * 12/2014 Usgaonkar GO6F 3/0614
711/103
9,058,122 B1* 6/2015 | ST GO6F 3/0659
9,110,860 B2 8/2015
9,152,603 B1* 10/2015 GO6F 15/17331
9,164,702 B1* 10/2015 Nesbitccoovvveennne GO6F 3/067
9,229,901 B1* 1/2016 .. GO6F 15/17331
9,244,880 B2* 1/2016 GO6F 15/17312
9,495,221 B2 11/2016
2005/0097300 Al 5/2005 Gildea et al.
2009/0063815 Al* 3/2009 Arimilli GO6F 15/17381
712/30
2010/0262822 Al* 10/2010 Honjoccccoweuee HO04L 47/10
713/153
2010/0275208 Al* 10/2010 Carrieccocoevennnen. GOG6F 8/451
718/102
2013/0054852 Al* 2/2013 FuoCo ..ccoovvevnans GOGF 13/4022
710/110
2013/0185375 Al* 7/2013 AhO ..ccoocevvvvrrnnnn GO6F 15/177
709/212
2013/0185381 Al* 7/2013 AhO ..ccooevvvvrerrnnn GO6F 15/177
709/217
2015/0331720 Al* 11/2015 Huetter GOG6F 9/544
718/104

OTHER PUBLICATIONS

Chen, Dong, et al., “The IBM Blue Gene/Q Interconnection Net-
work and Message Unit”, “SC11”, Nov. 12-18, 2011, pp. 1-10.
Mellanox Technologies, “CORE-Direct—The Most Advanced Tech-
nology for MPI/SHMEM Collectives Offoads”, “downloaded from:
http://’www.mellanox.com/pdfiwhitepapers/TB_CORE-Direct.pdf”, May
2010.

Mellanox Technologies, “Fabric Collective Accelerator (FCA)”,
“download from web-address: http://www.mellanox.com/related-
docs/prod_acceleration_software/FCA .pdf”, 2011.

Shainer, Gilad, et al., “Accelerating High Performance Computing
Applications Through MPI Offloading”, “HPC Advisory Council”,
2011, Publisher: downloaded from: http://www.hpcadvisorycouncil.
com/pdf/WP_Accelerating HPC %20Apps_through MPI_Offloading.
pdf.

* cited by examiner

US 10,129,329 B2

Sheet 1 of 6

Nov. 13, 2018

U.S. Patent

NETWORK PHYSICAL INTERFACE

L0}

I "OId

wii_
! -
e ——— e)| _ _ﬂ _ .x_.n
m : 1z AT Lo
: | o i i !
P o —— T 0¢7 k o, ,
ik e m N T N >
! le | _ N B
_— " ol ! | e U2
| A S i N i .
| VY e \ T s
A RN —L
TN e 2
! 1672 \ "k . -
_ 1 »
: !
. , : i
T
i ! o
| g0 o .
| MO | i
Ay R L e e /
— : L g N
! Loass Yy [/
i m e < v €2z R
AN via o
IR ~ 5 — v S
! 12z PR o’
WYH9VIQ Y0078 AIN

APPLICATION SOFTWARE INTERFACE

US 10,129,329 B2

Sheet 2 of 6

Nov. 13, 2018

U.S. Patent

] _ -—]
= : I <
DUISSH gopp | 0 NOWLAN geyg OYISO
(SS0VHAN) oyt WOIN " VoW asH
oNp g1 872 G 166z e
J . |_NOWDIY | 82z @ _ veee oeee
dS 1IN 68€Z” ~.m..—. A - ep _ | d_. J
: ! rad N 4 | dsSy I . dsy
A 7ANE Y ol ldd. a9 | & 9¢¢ 7ee7 | _ LZET | i L1€2 P
AR oOMIN| P — ORI et R St L
_ @ esve (1v¥ ‘316 ‘LdN D), lgsuay)i S 7tz i o
w | i o ez UM %oo.“:s_s_o_ EE odf | £€C i m
= ; m T[T P4 A— YA i e s > z
& 0572 | 1vH e X o SNV e T eyl 1 OVEC ISHINWI 3
Ele L SNvail STOUWN | ¥Eed (THMDD - _ =
x — : i (0ISS ‘LW V10 | <
o ! L[/ — J &~ 316 300" vez . 8
= I = o =Glez | ALMM D07 H0HNT | W
Zloovz. L 1SHE | _|rf" oM e % pw 2\si¥e2 Qv F18VL 30Vd | 4
e . N] 2 % DI ILRIMOL | =
dsii - .dd N\ 71€Z Q3LVIX dST L3N | S
13N; i 13N T~ |Bo N i @
m i mmma%u go 20 _
! . : !
| BH0 (97C RE) wuram:. C e 318 tezz | VAva ¥3SN N
| 09%% |l _. lege o oy Seiez | OvE LM HOLEOSIAXL |
Oy ™ pay 1IN : aiss 'oay: ¥ 1IN =< z1ez QY V1va ¥3sn aN3s/ind
13N ! . <IN Vi e - o
e | mb, s3] v1a e mwmw A ez SNVISOdEVIOTL -
- N M 13N IER NS VENY
| | 662 e L =z e \eee szl
aNrdsd eeee
. NS 727z WYHOYICA Y0078 4IN
102 ¢ OIA

US 10,129,329 B2

Sheet 3 of 6

Nov. 13, 2018

U.S. Patent

21901
NOILYOI4ILON .
» HIAIYA Do 0L
HOLdI¥0S3d » / SNOILYOISILON H3XVIN
mmmJ / SNLVLS NOILYOOTIV
pie
o
...................................... | z2zLe
— | > guvdOL
ozee “Jzie SUVIS
044 ! T3AT
JONVAIOAY %001avaa ! T4 0414
| 21901
gyvl Ol < < — JONVLLINQY Odid [« —
| | HOLdI¥0S$3a ¥3d 0ZL€ Y- NOXA
= "
A% ! -
A " 28 ",
06e 3N3aNd3ad | JN3NON3 0LE
122
€ "DIA

US 10,129,329 B2

Sheet 4 of 6

Nov. 13, 2018

U.S. Patent

[] [J
v1va LN3AZ DD o B o |l
IV E A — o | .
NOILYDOTIV
~ —~
LEY 0EY
— p %03HO ¥Oldos3aa [& VN NOY
041401 N 3N3NON3 TVNAIAIGNI 30093d ONIMOIHD
o NOILYOOTV aNv SINNOD Y3avaH 14
LEDIAR ¢ A9VIS 2 39VIS | 3OVIS
oz = = = f
QLY oLy 1414 iy
\ NOILONN4 ININDN3
0Ly
V "DIA

US 10,129,329 B2

Sheet 5 of 6

Nov. 13,2018

U.S. Patent

A

M e
) 91907
Bvl O quvl ANV ssIdaav
viva A
01 VIva B viva
= - J
816 915 "
~—
0es 04l
f
. 215
ONI 0L
omm\ 300 HINIYIN VId 3N3N03a
INNO? 3N3NDIA

V1vQ
mm&\, 3ININON3
o4
939V1S
.
01
S "OIAd

U.S. Patent Nov. 13,2018 Sheet 6 of 6 US 10,129,329 B2

FIG. 6 600

Ao
ool 12100
il cconore

Hardware Abstraction Layer (HAL)
{optionally including NIF)

NETWORK HARDWARE

US 10,129,329 B2

1
APPARATUS AND METHOD FOR
DEADLOCK AVOIDANCE

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a divisional of U.S. patent application
Ser. No. 13/798,074 filed on Mar. 12, 2013 (which issued as
U.S. Pat. No. 9,160,607 on Oct. 13, 2015), which claims
priority benefit, under 35 U.S.C. § 119(e), of U.S. Provi-
sional Patent Application No. 61/724,887 filed Nov. 9, 2012
by Edwin Froese et al., titled “Method and apparatus for
deadlock avoidance,” and U.S. Provisional Patent Applica-
tion No. 61/724,891 filed Nov. 9, 2012 by Edwin Froese et
al., titled “Collective engine method and apparatus,” each of
which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates generally to computer software
and/or hardware, and more particularly to methods and
apparatus to prevent deadlocks in a multiprocessor environ-
ment.

BACKGROUND OF THE INVENTION

A massively parallel processor (MPP) is one type of
supercomputer. An MPP consists of a large number of
independent computing nodes (processors and memory)
interconnected with a specialized high-speed network. The
number of nodes in a supercomputer can be in the thousands.
An application or task running on an MPP is divided into
many subtasks, each of which executes on its own node. The
subtasks execute in parallel, each subtask computing a
portion of the final result. These individually computed
results, in general, need to be combined multiple times
during the execution of the overall application, with the
combined intermediate result being sent back to each of the
nodes running the subtasks of the application.

When the processes on the plurality of nodes in an MPP
interact, the possibility of deadlock exists. Deadlock is a
situation in which two or more processes are waiting for
mutual messages or for related events to occur, but neither
receives the notification, and just continues to wait. Dead-
lock can result from programming errors. Deadlock may
also be a result of a hardware implementation, such that
occasionally, due to hardware conditions, a possibility exists
that the messages or notifications block each other, will
never get sent to the waiting processes, and the processes
end up deadlocked. In some computing environments, it
may be acceptable to detect after-the-fact that deadlock has
occurred and to correct the problem. This is not acceptable
in a supercomputing MPP environment, where the number
of interacting processes can be in the thousands. Even a very
small possibility of deadlock can have large impacts on
overall application performance.

There remains a need in the art for an improved engine
and method for performing deadlock avoidance in an MPP.

BRIEF SUMMARY OF THE INVENTION

In some embodiments, the present invention includes a
method for the prevention of deadlock in an MPP system.
Prior to a subtask (a portion of application software) sending
and receiving messages from another subtask, the subtask
allocates space in a deadlock-avoidance FIFO (first-in-first-
out buffer). The allocated space provides a “landing zone”

10

20

25

30

35

40

45

50

55

60

65

2

for requests that the software process (the application soft-
ware) will subsequently issue using the fast memory access
(FMA). The FMA function provides software with windows
into the memory space of remote nodes, allowing software
running at the local node to PUT and GET data directly to
and from the remote node’s memory. The FMA forwards
remote-memory-access requests to the deadlock-avoidance
(DLA) function (also referred to as a deadlock-avoidance
engine). The purpose of the DLA function is to prevent
deadlock cycles, involving traffic flows between nodes, by
isolating software processes from back-pressure exerted by
the Network interconnecting the nodes. In some embodi-
ments of the present invention, the deadlock-avoidance
(DLA) function provides two different deadlock-avoidance
schemes: Controlled Discard and Persistent Reservation.
The software process selects the scheme that will be used at
the time the space is allocated.

In some embodiments, the present invention provides a
computer-implemented method and/or system for deadlock
avoidance in a parallel-processor system, wherein the par-
allel-processor system includes a plurality of nodes, wherein
each one of the plurality of nodes includes a node buffer, a
processor and local memory, wherein the plurality of nodes
includes a first node having a first node buffer, a second node
having a second node buffer, and a third node having a third
node buffer, wherein each node is operatively coupled to a
plurality of other nodes, and wherein a software process
executes on each one of the plurality of nodes, the method
comprising: receiving, in the first node, a first command
from a first software process executing in the processor of
the first node, to reserve N1 allocation units of space in the
first node buffer for communication between the first soft-
ware process executing in the processor of the first node and
other software processes executing in processors of other
nodes, wherein N1 is a number between one and a total size
of the first node buffer, checking whether the first node
buffer contains at least N1 unreserved allocation units of
space to satisfy the first command, and if N1 unreserved
allocation units now exist in the first node buffer, then
reserving N1 allocation units for use by the first process, but
if N1 unreserved allocation units do not now exist then
denying the first command for allocation units of space,
entering a first remote-memory-access request from the first
software process into the first node buffer, indicating that an
additional one of the allocation units in the first node buffer
is in use, performing a first remote-memory-access opera-
tion by sending the first remote-memory-access request over
the network to the second node, and communicating data
between the second node and the first node based on the first
remote-memory-access request, removing the first remote-
memory-access request from the first node buffer, indicating
that one of the allocation units in the first node buffer is no
longer in use, entering a second remote-memory-access
request from the first software process into the first node
buffer, indicating that an additional one of the allocation
units in the first node buffer is in use, performing a second
remote-memory-access operation by sending the second
remote-memory-access request over the network to the third
node, which causes the third node to communicate data
between the third node and the first node, removing the
second remote-memory-access request from the first node
buffer, indicating that one of the allocation units in the first
node buffer is no longer in use, and receiving, in the first
node, a second command from a first software process
executing in the processor of the first node, to un-reserve N1

US 10,129,329 B2

3

allocation units of space in the first node buffer of the first
node, and un-reserving N1 allocation units of space in the
node buffer of the first node.

In some embodiments, when using the Controlled Discard
scheme, software issues an allocation request to the dead-
lock-avoidance engine indicating the amount of space it
needs for a block of requests it is about to issue and can
immediately follow the allocation request with those
requests. The deadlock-avoidance engine allocates space for
the entire block if it has sufficient space available. Other-
wise, the deadlock-avoidance engine discards all requests of
the block. An indication is returned to application software
of whether or not the allocation was successful. If the
allocation was not successful, the application software later
retries the allocation and the corresponding block of
requests. Therefore, the application software must retain the
state information that it requires to be able to retry the block
until it determines that the allocation for the block was
accepted by the deadlock-avoidance engine. Application
software may issue successive blocks in pipeline fashion
without first waiting for the allocation success or failure
notification of prior blocks.

In some embodiments, when using the Persistent Reser-
vation scheme, a software process (application software)
issues an allocation request to the deadlock-avoidance
engine indicating an amount of space that is to be reserved
within the deadlock-avoidance FIFO. An indication is
returned to the application software of whether or not the
allocation was successful. Once the application software
determines that the allocation was successful, it may use the
FMA to send any number of requests, and all will be
accepted by the deadlock-avoidance engine provided that
the amount of space being occupied in the FIFO never
exceeds the allocated amount. This scheme does not require
that application software be able to retry requests that have
already been issued.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a Network Interface Function
101, according to some embodiments of the invention.

FIG. 2 is a block diagram of a Network Interface Function
201, according to some embodiments of the invention.

FIG. 3 is a block diagram of a DLLA engine 221, according
to some embodiments of the invention.

FIG. 4 is a block diagram of the enqueue function 410,
according to some embodiments of the invention.

FIG. 5 is a block diagram of the DLLA dequeue function
330, according to some embodiments of the invention.

FIG. 6 shows a block diagram of one embodiment using
an exemplary network software stack 600.

DETAILED DESCRIPTION OF THE
INVENTION

Although the following detailed description contains
many specifics for the purpose of illustration, a person of
ordinary skill in the art will appreciate that many variations
and alterations to the following details are within the scope
of'the invention. Very narrow and specific examples are used
to illustrate particular embodiments; however, the invention
described in the claims is not intended to be limited to only
these examples, but rather includes the full scope of the
attached claims. Accordingly, the following preferred
embodiments of the invention are set forth without any loss
of generality to, and without imposing limitations upon the
claimed invention. Further, in the following detailed

25

40

45

55

4

description of the preferred embodiments, reference is made
to the accompanying drawings that form a part hereof, and
in which are shown by way of illustration specific embodi-
ments in which the invention may be practiced. It is under-
stood that other embodiments may be utilized and structural
changes may be made without departing from the scope of
the present invention.

The leading digit(s) of reference numbers appearing in the
Figures generally corresponds to the Figure number in
which that component is first introduced, such that the same
reference number is used throughout to refer to an identical
component which appears in multiple Figures. Signals and
connections may be referred to by the same reference
number or label, and the actual meaning will be clear from
its use in the context of the description.

The following abbreviations, among others, appear in the
present description: AMO (atomic memory operation); BTE
(block-transtfer engine); COMP WAT (completion wait); CQ
(completion queue); DLA (deadlock avoidance); FIFO
(first-in-first-out buffer); HSS (hardware supervisory sys-
tem); IND (indication); IOMMU (input-output memory-
management unit); IRQ (interrupt request); LB (logical
block); MAINT (maintenance); MMR (memory-mapped
registers); MON (monitor); NAT (network-address transla-
tion); NET (network); NICLM (network-interface core-
logic monitor); NPT (non-posted table); ORB (outstanding-
request buffer); OS (operating system); PARB (processor-
interface arbiter); PG (page); RAT (remote-address
translation); RD (read); REQ (request); RMT (receive-mes-
sage table); RSP (response); SSID (synchronization-se-
quence identification); TARB (transmit arbiter); TBL
(table); TRANS (translate); TX (transmit); WC (write com-
bining); WRT (write).

FIG. 1 is a block diagram of a network-interface function
101. The network-interface function provides functionality
to manage the transfer of data between application software
via an application-software interface 110 and a Physical
Network Interface 112. In some embodiments, this network
is the hardware that forms a high-speed network (HSN)
interconnecting the nodes of a massively parallel processor
system. The network-interface function (NIF) 101 is a
facility to convert traffic from and to a network interface. In
some embodiments, the NIF is implemented entirely in
software (in some such embodiments, the NIF 201 (all or a
substantial number of its components shown in FIG. 2) is
implemented in the hardware abstraction layer software (see
FIG. 6 described below)). In some embodiments, the NIF is
partially implemented in hardware. In other embodiments,
the NIF is implemented substantially entirely in hardware.

In some embodiments, the fast memory access (FMA)
function 222 (also called a remote-memory-access function)
provides software with windows into the memory space of
the remote endpoints, allowing software running at the local
processor (node) to PUT and GET data directly to and from
the remote endpoints” memory. In some embodiments, soft-
ware may also perform atomic memory operations between
local operands and remote memory locations using the
atomic-memory-operation function 232 (AMO). Using
FMA 222, software at the local processor explicitly controls
each element of data that is transferred. Before an operation
can be performed an FMA descriptor that will be used to
control the operation must first be configured by software.
Typically, one or more FMA descriptors are assigned to an
application process. In some embodiments, the FMA is
implemented entirely in software (in some such embodi-
ments, the FMA is implemented in the hardware abstraction
layer software (see FIG. 6 described below)). In some

US 10,129,329 B2

5

embodiments, the FMA is partially implemented in hard-
ware. In other embodiments, the FMA is entirely imple-
mented in hardware. In some embodiments, the descriptors
are stored in memory-mapped registers (MMRs) in the FMA
unit. In some embodiments, each FMA supports 127 FMA
descriptors. In other embodiments, each FMA supports
between 64 and 128 descriptors. In other embodiments, each
FMA supports between 96 and 192 descriptors. In other
embodiments, each FMA supports between 128 and 256
descriptors.

In some embodiments, the block-transfer engine (BTE)
223 provides software running at the local processor with
the ability to transfer potentially large blocks of data to and
from the memory of remote endpoints by issuing just a
single transaction request. In using BTE, a software appli-
cation is off-loaded from performing the actual element-by-
element data transfer, and so is able to perform other
processing while the actual transfer is taking place. In some
embodiments, the BTE is implemented entirely in software
(in some such embodiments, the BTE is implemented in the
hardware abstraction layer software (see FIG. 6 described
below)). In some embodiments, the BTE is partially imple-
mented in hardware. In other embodiments, the BTE is
entirely implemented in hardware.

In some embodiments, the FMA 222 forwards remote-
memory-access requests to the deadlock-avoidance (DLA)
engine 221 (also referred to as the DL A function or simply
DLA). The purpose of the DLA engine 221 is to prevent
deadlock cycles, involving traffic flows between nodes, by
isolating software processes from back-pressure exerted by
the high-speed network (HSN). The DLA function includes
a large buffer (in some embodiments, a first-in-first-out
buffer (FIFO)) for absorbing network-bound requests. If the
rate at which HSN-bound requests, arriving from FMA,
exceeds the rate at which the network is accepting requests
such that the FIFO becomes full, the DL A engine discards
subsequent requests arriving from FMA. In some embodi-
ments, the DLA engine includes mechanisms to partition the
FIFO space between the different FMA descriptors, and
mechanisms to allow software to interact with the FIFO fill
level and to be informed of any discards that may have
occurred. The DLA engine forwards the HSN-bound
requests to a transmit arbiter (TARB) 242. In some embodi-
ments, the DLA is implemented entirely in software (in
some such embodiments, the DLA is implemented in the
hardware abstraction layer software (see FIG. 6 described
below)). In some embodiments, the DLA is partially imple-
mented in hardware. In other embodiments, the DLA is
entirely implemented in hardware.

In some embodiments, the collective-engine (CE) func-
tion 247 provides the ability to perform rapid reductions of
small quantities of data across potentially many software
processes running at many network endpoints. Each CE
function supports a plurality of virtual CEs. To facilitate
scaling, software configures virtual connections between
virtual CEs such that the virtual CEs are arranged in an
inverted-tree structure. The software processes join a reduc-
tion by issuing requests to the virtual CEs at the bottom of
the tree. Partial reduction results propagate upward toward
the root of the tree. The final reduction result propagates
back down the tree and is delivered to the participating
processes by the virtual CEs at the bottom of the tree. In
some embodiments, the CE is implemented entirely in
software (in some such embodiments, the CE is imple-
mented in the hardware abstraction layer software (see FIG.
6 described below)). In some embodiments, the CE is

10

20

25

30

35

40

45

50

6

partially implemented in hardware. In other embodiments,
the CE is entirely implemented in hardware.

In some embodiments, the transmit arbiter (TARB) 242
arbitrates the request packets from DL A 221, BTE 223, and
CE 247 and passes the requests, unmodified, to a synchro-
nization-sequence-identification (SSID) function 243. In
some embodiments, the TARB 242 is implemented entirely
in software (in some such embodiments, the TARB 242 is
implemented in the hardware abstraction layer software (see
FIG. 6 described below)). In some embodiments, the TARB
242 is partially implemented in hardware. In other embodi-
ments, the TARB 242 is entirely implemented in hardware.

In some embodiments, the synchronization-sequence-
identification (SSID) function 243 tracks request-packet
sequences. Each sequence corresponds to a different trans-
action. Based on special packets that are issued from the
request sources (FMA, BTE, CE) to mark the beginning and
end of transactions and the particular FMA descriptor, BTE
channel, or virtual CE that the packet is associated with, the
SSID assigns each request packet destined for the network
to its correct sequence and inserts a sequence identifier (ssid
value) into the packet. The network-bound request is for-
warded on to an outstanding-request-buffer (ORB) 246
function. In some embodiments, the SSID is implemented
entirely in software (in some such embodiments, the SSID
is implemented in the hardware abstraction layer software
(see FIG. 6 described below)). In some embodiments, the
SSID is partially implemented in hardware. In other embodi-
ments, the SSID is entirely implemented in hardware.

In some embodiments, the outstanding-request-buffer
(ORB) function 246 tracks packets. The ORB assigns and
inserts a packet ID value into each request forwarded to the
network physical interface 112. A response with the same
packet ID value is expected to be eventually returned.
Fetching requests are expected to return a response that
contains data that will be written to the memory of the local
processor. For Fetching requests, the ORB 246 retains the
local address information contained in the request. The local
address information will eventually be needed to write the
response data to memory. The local address information is
stripped off of the request before it is forwarded to the
network physical interface. In some embodiments, the ORB
is implemented entirely in software (in some such embodi-
ments, the ORB is implemented in the hardware abstraction
layer software (see FIG. 6 described below)). In some
embodiments, the ORB is partially implemented in hard-
ware. In other embodiments, the ORB is entirely imple-
mented in hardware.

In some embodiments, remote-address-translation (RAT)
245 and network-address-translation (NAT) 241 functions
provide for validation of requests targeting the local pro-
cessor’s memory. Requests targeting the memory of the
local processor, such as PUTs and AMOs from remote
endpoints, and GET responses, are validated before being
delivered to the software application to confirm they are
authorized and fall within the bounds of the targeted
memory domain. The remote-address-translation (RAT) 245
and network-address-translation (NAT) 241 functions are
involved in the validation. The authorization is performed
through a protection-tag (PTAG)/protection-key (PKEY)
mechanism. Each network request carries a PKEY value.
PKEY values are derived from PTAG values configured by
software. For a request to be authorized its PKEY value must
correspond to the PTAG value configured for the targeted
memory domain. In some embodiments, the RAT and NAT
are implemented entirely in software (in some such embodi-
ments, the RAT and NAT functions are implemented in the

US 10,129,329 B2

7

hardware abstraction layer software (see FIG. 6 described
below)). In some embodiments, the RAT and NAT are
partially implemented in hardware. In other embodiments,
the RAT and NAT are entirely implemented in hardware.

In some embodiments, an input/output memory-manage-
ment unit (IOMMU) 235 supports memory management by
providing memory page translation for requests targeting the
local processor’s memory. The input/output memory-man-
agement unit (IOMMU) is involved in this translation. In
some embodiments, the IOMMU is implemented entirely in
software (in some such embodiments, the IOMMU is imple-
mented in the hardware abstraction layer software (see FIG.
6 described below)). In some embodiments, the IOMMU is
partially implemented in hardware. In other embodiments,
the IOMMU is entirely implemented in hardware.

In some embodiments, a receive-message-table (RMT)
function 236 provides mechanisms based on completion
queues and interrupt requests for notifying software of
significant events, such as the complete reception of a
message targeting the local processor, and global visibility
of the results of a sequence of requests issued by the local
processor. The synchronization-sequence-identification
(SSID) function 243, receive-message-table (RMT) function
236, and completion-queue (CQ) 234 functions are the
principal entities involved. Certain types of requests can be
tracked by the RMT for the purpose of issuing a completion
notification when all requests of a message have been
received. If the request is of this type, the RMT updates its
table of message state information. (The RMT maps indi-
vidual request packets to messages based on the source
endpoint ID of the request and the ssid value contained in the
request.) In some embodiments, the RMT is implemented
entirely in software (in some such embodiments, the RMT
is implemented in the hardware abstraction layer software
(see FIG. 6 described below)). In some embodiments, the
RMT is partially implemented in hardware. In other embodi-
ments, the RMT is entirely implemented in hardware.

In some embodiments, a non-posted-table (NPT) function
233, forward requests received to the atomic-memory-op-
eration (AMO) function 232. For each request received from
the HSN, a response is returned to the source endpoint. The
NPT 233 is responsible for forwarding the request’s
response to the HSN via the network’s physical interface
112. For fetching requests, the response to the network’s
physical interface can only be issued after the data to be
returned in the response has been received from the AMO
function, which, in turn, is generally dependent on having
received the data from a software process. The NPT is
responsible for tracking each request for which a response is
outstanding, and for matching each response received from
the AMO function with the corresponding outstanding
request. For non-fetching requests, the NPT can issue the
response immediately upon forwarding the request on to the
AMO function, or optionally, can request a response in the
request that it forwards to the AMO function, and only return
the response to the network upon receiving the response
from the AMO function. In some embodiments, the NPT are
implemented entirely in software (in some such embodi-
ments, the NPT is implemented in the hardware abstraction
layer software (see FIG. 6 described below)). In some
embodiments, the NPT and AMO are partially implemented
in hardware. In other embodiments, the NPT and AMO are
entirely implemented in hardware.

The term “node” refers to a memory hierarchy and set of
processing resources attached to a single network interface.
In some embodiments, a node may contain one or more
processors together with local memory. Local memory

15

25

40

45

50

8

refers to the memory hierarchy within a node. In some
embodiments, local memory may be part of a cache-coher-
ent domain (an intra-node domain). Remote memory refers
to memory on a different node. Local memory can be
accessed by a processor at the node using load and store
operations.

The term “network endpoint,” or simply “endpoint,” is
usually equivalent to node. In some embodiments, it is
possible to have multi-ported nodes. A multi-ported node is
one which is connected to more than one network interface.
In the case of a multi-ported node, the terms node and
network endpoint are not quite equivalent, as a multi-ported
node appears in the system as more than one network
endpoint.

A “sequence” is a series of requests sent from one
endpoint to another. These requests may consist of PUT,
BTE_SEND, or GET packets. In the case of a PUT or
BTE_SEND sequence, it may include a message-complete
packet. A “message” consists of a sequence and a comple-
tion notification at the destination. The completion notifica-
tion may include a CQ event or flag data write in the case of
a PUT or GET message, or an RX Descriptor writeback in
the case of a BTE_SEND message. A “transaction” is more
broadly interpreted. A transaction includes one or more
sequences or messages, the mechanisms to initiate those
sequences, and a source-side completion notification
(SSCN). For example, a transaction may be used to send a
single message from the FMA. In this case, the transaction
includes the programming of the FMA, the transmission of
the message, and the source-side completion notification.
However, a transaction could also be used to perform a
series of PUT or GET sequences involving different desti-
nation endpoints. In this case, the SSCN provides the
following information: that the transaction is complete, that
all GET responses are visible at the source, and whether or
not the transaction was successful.

A flit (flow control digits) is a sub-portion of a network
packet. In some embodiments, large network packets are
broken into small pieces called flits (flow control digits). The
first flit, called the header flit, holds information about this
packet’s route (namely the destination address) and sets up
the routing behavior for all subsequent flits associated with
the packet. The head flit is followed by zero or more body
flits, containing the actual payload of data. The final flit,
called the tail flit, performs some bookkeeping to close the
connection between the two nodes. One thing special about
wormhole flow control is the implementation of virtual
channels.

FIG. 2 is a block diagram of a network-interface function
(NIF) 201 (in some embodiments, some or all of this is
implemented in hardware, and so is also sometimes referred
to as a network-interface circuit (NIC) 201 in some embodi-
ments, a network-interface core (NIC) in other embodi-
ments, or as a network-interface card (NIC) in yet other
embodiments). The network-interface circuit (NIC) 201 has
a collective-engine (CE) function 247 and a deadlock-
avoidance (DLA) function 221, according to some embodi-
ments of the invention. In some embodiments, NIF 201
includes FMA function 222 that receives, as input, signal
REQ 2221 sent from the software application interface 298
of the processor connected to the node (the left side of FIG.
2), and signal RSP IND 2222; FMA function 222 outputs
signal NET REQ 2211 sent to DLA function 221, and
outputs signal CQ DESC UPDATE 2341 sent to function
CQ 234.

In some embodiments, DLA function 221 receives, as
input, signal NET REQ 2211; DLA function 221 outputs

US 10,129,329 B2

9

signal NET REQ 2421 sent to TARB function 242, and
outputs signal DLA FIFO STATUS 2311 sent to function
PARB 231. In some embodiments, TARB function 242
receives, as input, signal NET REQ 2421 from DLA 221,
signal NET REQ 2422 from BTE 223 and signal NET REQ
2423 from CE 247; TARB function 242 outputs signal NET
REQ 2431 sent to SSID function 243.

In some embodiments, SSID function 243 receives, as
input, signal NET REQ 2431 from TARB function 242, and
generates signals NET REQ 2461 sent to ORB 246 and RSP
IND 2233 sent to BTE 223; SSID function 243 also gener-
ates as output signal FLUSH REQ and in return receives, as
input, signal FLUSH RSP from WC 244 and signal NET
RSP HEADERS from WC 244.

In some embodiments, BTE function 223 receives as
input signals RSP IND 2233 from SSID 243, USER DATA
RD RSP 2231 from NPT 233 and USER DATA RD ADDR
2232 from NAT 241, and generates as output signals NET
REQ 2422 sent to TARB 242, PUT/SEND USER DATARD
2312 sent to PARB 231 and TX DESCRIPTOR WRITE
BACK 2313 sent to PARB 231. BTE 223 also communi-
cates, as input and output, signal TRANS 2235 to and from
NAT 241.

In some embodiments, ORB function 246 receives, as
input, signal NET REQ 2461 from SSID function 243, and
generates output signal NET REQ 2460; ORB function 246
then receives, as input, signal NET RSP 2462 and generates
as output signal NET RSP 2451 sent to RAT function 245.

In some embodiments, RAT function 245 receives, as
input, signal NET RSP 2451 from ORB function 246, and
generates output signal NET RSP 2441 sent to WC 244;
RAT function 245 also receives, as input, signal NET REQ
2452 and generates, as outputs, signal NET REQ 2471 sent
to CE function 247 and signal NET REQ 2361 sent to RMT
function 236; RAT function 245 also communicates, as input
and output, signal TRANS 2415 to NAT 241, receives as
input, signal COMP REQ 2453 and generates as output
signal LINK ACTIVE 2450.

In some embodiments, WC function 244 receives, as
input, signal NET RSP 2441 from RAT function 245, and
generates output signal NET RESP XLATED TO WRITE
REQ 2314 to PARB function 231 and output signal PAGE
TABLE READ/ERROR LOG WRITE 2315 also sent to
PARB function 231; WC function 244 receives (from SSID
function 243) as input signal FLUSH REQ and in return
sends, as output, signal FLUSH RSP and signal NET RSP
HEADERS to SSID function 243.

In some embodiments, NAT function 241 communicates,
as input and output, signal TRANS 2415 to RAT function
245; communicates, as input and output, signal TRANS
2345 to CQ function 234; communicates, as input and
output, signal TRANS 2355 to IOMMU function 235;
communicates, as input and output, signal TRANS 2235 to
BTE function 223; and generates as output, signal USER
DATA RD ADDR 2232 sent to BTE 223.

In some embodiments, CQ function 234 communicates,
as input and output, signal TRANS 2345 to NAT function
241; receives, as input, signal CQE (BTE, DLA, RMT,
SSIO) 2341 and generates as output CQ WRT 2331 sent to
NPT 233.

In some embodiments, IOMMU function 235 receives, as
input, signal COMP WAT (CQ, NPT, BTE, RAT) 2351;
receives, as input, signal PG TBL RD RSP 2352; commu-
nicates, as input and output, signal TRANS 2355 to NAT
function 241; and generates, as output, COMP REQ 2453
sent to RAT 245.

10

15

20

25

30

35

40

45

55

60

65

10

In some embodiments, CE function 247 receives, as input,
signal NET REQ 2471 from RAT 245; generates, as output,
signal NET REQ 2423 sent to TARB function 242; and
generates as output, signal RSP 2332 sent to NPT 233.

In some embodiments, RMT function 236 receives, as
input, signal NET REQ 2361 from RAT 245; and generates
as output, signal NET REQ 2333 sent to NPT 233.

In some embodiments, NPT function 233 receives, as
input, signal CQ WRT 2331 from CQ function 234; receives,
as input, signal RSP 2332 from CE function 247; receives,
as input, signal NET REQ 2333 from RMT function 236;
receives, as input, signal RSP 2334 from AMO function 232.
NPT function 233 also generates as output, signal USER
DATA RD RSP 2231 sent to BTE 223, generates as output,
signal REQ 2321 sent to AMO 232, generates as output,
signal NET RSP 2339 sent to Network Interface 299, and
generates as output, signal MAINT RSP 2316 sent to PARB
231.

In some embodiments, PARB function 231 receives, as
input, signal DLLA FIFO STATUS 2311 from DLA function
221; receives, as input, signal PUT/SEND USER DATA RD
2312 from BTE function 223; receives, as input, signal TX
DESCRIPTOR WRITE BACK 2313 from BTE function
223; receives, as input, signal NET RESP XLATED TO
WRITE REQ 2314 from WC function 244; receives, as
input, signal PAGE TABLE READ/ERROR LOG WRITE
2315 from WC function 244; receives, as input, signal
MAINT RSP 2316 from NPT function 233; and receives, as
input, signal REQ 2317 from AMO function 232. PARB
function 231 also generates as output, signal REQ 2310 sent
to the software application interface 298 of the processor
connected to the node.

In some embodiments, AMO function 232 receives, as
input, signal REQ 2321 from NPT 233; then generates as
output, signal REQ 2317 sent to PARB 231; AMO function
232 also receives, as input, signal RSP 2322 sent from the
software application interface 298 of the processor con-
nected to the node, then generates as output, signal RSP
2317 sent to NPT 233.

In some embodiments, NICLM function 248 communi-
cates with REQ MON function 229; communicates with
RSP MON function 239; communicates with NET MON
function 249; communicates signal LB RING (MMR
ACCESS) 2481 with the network interface 299 on the
network side (to the right hand side of the FIG. 2); generates
as output signal HSS IRQ 2489 sent to the network interface
299, and generates as output signal OS IRQ 2488 sent to the
network interface 299.

Deadlock-Avoidance Engine Description

The present invention includes a deadlock-avoidance
(DLA) engine or function. In some embodiments, the DLLA
engine includes a large software-managed FIFO used to
guarantee that a request sent towards the high-speed network
(HSN) will be able to leave the processor initiating the
request. The DLA engine receives requests from the FMA
function and enqueues them in its FIFO if space has been
reserved for the request. Requests are then passed to the
TARB 242 after they are dequeued. Software reserves space
in the FIFO by performing allocation requests and can
guarantee that all prior requests are dequeued by sending a
DLA marker through the FIFO. Allocation status and marker
dequeue events are reported through a standard completion-
queue (CQ) interface. FIFO status for software use is
periodically written to memory. In some embodiments, there
are two allocation models allowed by the DLA: Persistent
Reservation (PR) and Controlled Discard (CD). Persistent
Reservation allows for a more static allocation of the DLA

US 10,129,329 B2

11

queue among FMA descriptors, while Controlled Discard
allows for a more dynamic allocation scheme. While several
features of the DL A engine can be used by either allocation
scheme, some of the features in the present invention are
more pertinent to only one of the allocation schemes.

FIG. 3 is a block diagram of a DL A engine 221. The DLA
engine is divided into two main sub-functions, enqueue 310
and dequeue 330. The enqueue function 310 processes FIFO
allocations and performs packet enqueue checks. The
dequeue function 330 takes packets from the enqueue func-
tion, writes them to the deadlock FIFO 332, and then reads
them and sends them to the TARB 242 for arbitration and
network injection. The dequeue function takes DA markers
from the FIFO, sends them 3320 to the Per Descriptor
Marker Notification Logic 314 in the enqueue function 310.

The DLA enqueue sub-function decodes packets 3120
from the FMA, performs FIFO allocations and de-alloca-
tions 312, and determines if packets will be written to the
DLA FIFO. The enqueue function uses FIFO configuration
settings, FIFO credits reserved and consumed counts, and
per descriptor status to perform these operations. The
enqueue function sends allocation status and DLLA marker-
event data 3122 to the completion queue (CQ). It also
updates memory with FIFO allocation status 3124.

FIG. 4 is a block diagram of the enqueue function 410. In
some embodiments, in enqueue-function stage-1 412,
header flits are checked for parity errors and single-error
correction double-bit-error detection (SECDED) is per-
formed on data flits. Packets with header parity errors are
discarded. In some embodiments, DLA-specific packets—
AllocSSID, SeqComplete, or DLAMARKER—are checked
for a status of A_STATUS_FMA_UNCORRECTABLE or
A_STATUS_DATA_ERR. These packets are also dropped.
Header-parity-error reporting takes priority over DL A pack-
ets with bad status. Packet flits with single-bit data errors are
corrected and reported. Double-bit errors are reported only;
no other action is taken.

Following data checking in enqueue-function stage-1 412,
headers of packets that are used by DLA are decoded in
enqueue-function stage-2 414. AllocSSID, SeqComplete,
and DLAMARKER packets are used within DLA to start
and end transactions and to start and end FIFO allocations
within transactions.

FIFO allocation decisions involve FIFO fill status as well
as status kept for each individual descriptor. FIFO fill status
checks are made for allocations at enqueue-function stage-3
416. A detailed description of FIFO fill status is provided
below. One of the individual descriptor enqueue blocks 430
receives a select signal when a packet header is at enqueue-
function stage-3. Individual descriptor blocks also receive
an enqueue request and an enqueue count signal for packets
that are intended to go through DLA and to the TARB.

The decision to allocate or to honor an enqueue request is
made at enqueue-function stage-4 418 in the selected
descriptor allocate unit packets 431 which pass their
enqueue checks are sent to the dequeue unit at enqueue-
function stage-5 420 to be entered into the main DLA FIFO.

FIG. 5 is a block diagram of the DLLA dequeue function
330. The DLA dequeue function receives packets from the
enqueue function and stores them 510 in the deadlock FIFO
512, provided they have passed their enqueue checks. Pack-
ets that have failed FIFO enqueue checks are discarded.
Since the DLA FIFO is large, in some embodiments, packet

10

15

20

25

30

35

40

45

55

60

65

12

headers are protected by ECC to meet reliability goals. The
packets are marked as low-priority controlled discard, high-
priority controlled discard, or persistent-reservation packet
type. ECC bits are generated and stored with the packet
header flits in stage 6 510. In some embodiments, the ECC
bits are generated and checked in hardware. The enqueue
type and ECC bits are stored in otherwise unused header bit
positions. Packets are stored in the main DLA FIFO and read
and sent from there to the TARB 518. Read addresses are
generated by Read Address Logic 514 based on information
from enqueue stage 6 510. Packets are stored in the DLA
queue on a half-flit granularity. This makes the queue
storage more efficient for payload sizes of one (1), three (3),
five (5), and seven (7) 64-bit words (rounded up to the
nearest 64-bit world). After reading from the FIFO,
SECDED is performed on packet headers in Read Data and
Verify 516. The enqueue type flags are used to send 530
consumed credit decrements back to the enqueue unit. DLA
marker information is also sent back to the enqueue func-
tion, which generates a CQ event for it. Only the used
half-flit is stored in the DLA FIFO for tail flits where the
upper data is not valid. On dequeue, the unused half-flit is
inserted to restore the original packet.

FIG. 6 shows a block diagram of one embodiment using
an exemplary network software stack 600. In some embodi-
ments, a high degree of compatibility is maintained with an
existing (e.g., the Cray XE6) system. In some embodiments,
implementations of GNI and DMAPP in the software stack
used in some embodiments of the present invention build on
those for the conventional “Gemini” NIC of the Cray XE6,
adding support for new features. Compatibility is main-
tained for software that uses these interfaces.

In some embodiments, the software of the present inven-
tion uses the MPICH2 software code distribution from
Argonne National Laboratory. In some embodiments, the
MPI (message-passing interface) implementation uses a
Nemesis driver for the network-router and NIF functions
layered over uGNI. (See H. Pritchard, I. Gorodetsky, and D.
Buntinas. “A uGNI based MPICH2 Nemesis Network Mod-
ule for the Cray XE.” In Proceedings of the 18th European
MPI Users’ Group Conference on Recent Advances in the
Message Passing Interface, EuroMPI °11, pp. 110-119,
Springer-Verlag, 2011.) Use of FMA (fast memory access)
gives MPI applications the ability to pipeline large numbers
of small, low-latency transfers—an increasingly important
requirement for strong scaling on multicore nodes. Where
space is available, intermediate size messages are sent
eagerly to pre-allocated system buffers. Large messages are
transferred using a rendezvous protocol in which bulk data
transfer occurs after matching of an MPI message header
and a receive request. Message matching is progressed by
each call, or in the case of large messages, using an optional
progress thread. The block-transter engine (BTE) is used to
provide high-bandwidth, good overlap of computation and
communication, and efficient use of main memory band-
width. Implementation of latency sensitive collectives,
including MPI_Allreduce and MPI_Barrier collective-re-
duction operations, is optimized using the collective engine
described above.

Cray SHMEM (shared memory) provides an explicit
one-sided communication model. (See Cray Research, Inc.
“SHMEM Technical Note for C,” SG-25 16 2.3, 1994.) Each
process executes in its own address space but can access
segments of the memory of other processes, typically the

13

static data segment and the symmetric heap through a
variety of put and get calls, AMO (atomic memory opera-
tions) calls, and collectives. Since the Cray T3D system,
Cray supercomputers have supported Cray SHMEM. Its
implementation for the present invention provides the appli-

US 10,129,329 B2

14

cation programmer with fine-grain control of communica-
tion with minimum overhead.

In some embodiments, the deadlock-avoidance engine
contains a plurality of storage elements or RAMs. In some
embodiments, as shown in Table 1, the DLA RAMSs include:

TABLE 1
Name Sub-unit Data Checkbits Size Comment
enq__ram Enqueue 31 7 128 x 38 Allocation CQ event data
deq__ram Enqueue 44 7 128 x 51 DLA Marker CQ event data
ram_ b0dOlo Dequeue 36 * 4096 x 36 Bank 0 data O lower
ram_ b0dOhi Dequeue 37 * 4096 x 37 Bank O data O higher and tail bit
ram_ b0Odllo Dequeue 36 * 4096 x 36 Bank O data 1 lower
ram_ bOdlhi Dequeue 37 * 4096 x 37 Bank O data 1 higher and tail bit
ram_bldOlo Dequeue 36 * 4096 x 36 Bank 1 data O lower
ram_bldOhi Dequeue 37 * 4096 x 37 Bank 1 data O higher and tail bit
ram_bldllo Dequeue 36 * 4096 x 36 Bank 1 data 1 lower
ram_bldlhi Dequeue 37 * 4096 x 37 Bank 1 data 1 higher and tail bit
20 The following table (Table 2) lists exceptions and errors
detected by DLA hardware, in some embodiments. For
every error listed in the table, an error is recorded.
TABLE 2
Sub-Unit Mnemonic Definition Action
DEQUEUE FIFO__DATA1_MBE FIFO data packet MBE Dropped if DLA
upper MARKER packet
DEQUEUE FIFO_DATA1_SBE FIFO data packet SBE Corrected
upper
DEQUEUE FIFO__DATAO_MBE FIFO data packet MBE Dropped if DLA
lower MARKER packet
DEQUEUE FIFO_DATAO_ SBE FIFO data packet SBE Corrected
lower
ENQUEUE MARKER_RAM_MBE DLA Marker CQE data Marker CQE dropped
RAM MBE
ENQUEUE MARKER_RAM_SBE DLA Marker CQE data Corrected
RAM SBE
ENQUEUE ALLOC_RAM_MBE Allocation status RAM Allocation CQE dropped
MBE
ENQUEUE ALLOC_RAM_ SBE Allocation status RAM Corrected
SBE
DEQUEUE FIFO_OVERFLOW FIFO overflow None
ENQUEUE HDR_PERR Incoming FMA request Drop packet, this error
packet with header parity has priority over
error FMA__PKT_ERR.
ENQUEUE FMA_ PKT_ERR Incoming FMA AllocSSID, Drop packet
SyncComplete, or
DLAMARKER request packet
with an Istatus of A_ STATUS__ FMA_UNCORRECTABLE
or
A__STATUS_ DATA_ERR
ENQUEUE ALLOC_BOTH_ERR Attempt to do both a CD Do neither a CD or a PR
and PR allocation allocation
ENQUEUE DATAl_MBE Incoming FMA request Error is reported, packet
packet with upper data field with data flit MBE is
MBE propagated
ENQUEUE DATAl_SBE Incoming FMA request Corrected
packet with upper data field
SBE
ENQUEUE DATAO_MBE Incoming FMA request Error is reported, packet
packet with lower data field with data flit MBE is
MBE propagated
ENQUEUE DATAO_SBE Incoming FMA request Corrected
packet with lower data field
SBE
DEQUEUE FIFO_HDR MBE Dequeued FIFO packet Dropped
header with MBE
DEQUEUE FIFO_HDR_SBE Dequeued FIFO packet Corrected

header with SBE

US 10,129,329 B2

15

The external interfaces of the DLA engine, for some
embodiments wherein the DLA engine is wholly or partially
implemented in hardware, are listed in the following
Table 3.

16

of whether or not the allocation was successful. If the
allocation was not successful, the application software later
retries the allocation and the corresponding block of
requests. Therefore, the application software must retain the

TABLE 3

/O Name Description

System Interface
input celk system clock
input i_reset system reset
input i_warm_ reset warm reset

FMA Interface
input i_fma_dla_req header FMA request header
input i_fma_dla_req_count[3:0] FMA request half-flit count, valid with header
input i_fma_dla_req sb[1:0] FMA request sideband
input i_fma_dla_req flit[143:0] FMA request flit
output r_q_dla_fma req ack[3:0] FMA request half flit acknowledge

TARB Interface
output r_q_dla_tarb req flit[143:0] TARB Request Channel Flit
output r_q_dla_tarb_req sb[1:0] TARB Request Channel Sideband
input i_tarb_dla_req ack TARB Request Channel Acknowledge
output r_q_dla tarb dl rec Gives DLA packets priority over CE and BTE in

TARB. Forced to 0.
PARB Interface
output r_q_dla_ parb_req_ flit[143:0] PARB Request Channel Flit
output r_q_dla_parb_req_sb[1:0] PARB Request Channel Sideband
input i_parb_dla_req_ack PARB Request Channel Acknowledge
Completion Queue Interface
output r_q_dla_cq_handle[10:0] CQ handle
output r_q_dla_cq_data[59:0] CQ event data
output r_q_dla_cq_valid Valid CQ Event
input i_cq_dla_ack Ack
Interrupt requests
output r_q_dla_pi_os irq OS interrupt to Processor Interface
output r_q_dla_lb_hss_irq HSS interrupt to Local Unit
MMR Ring and Logic Monitor (REQMON) Interface

input i_reqmon_dla_ ring[15:0] MMR ring in
output r_q_dla_reqmon_ ring[15:0] MMR ring out
output r_q_dla reqgmon_ ring wrack MMR write acknowledge
input i_reqmon_ dla_ select0[7:0] Data 0 select
input i_reqmon_dla_selectl[7:0] Data 1 select
output r_q_dla_ reqgmon_ data0[146:0] Data 0O
output r_q_dla_reqmon_ datal[146:0] Data 1
output r_q_dla_reqgmon_ cntr_inc[15:0] Performance counter increments

In some embodiments of the present invention, the dead-
lock-avoidance mechanism provides two different deadlock
avoidance schemes:

1. Controlled Discard

2. Persistent Reservation

With both schemes, software allocates space, on a per-
FMA descriptor basis, in a deadlock-avoidance FIFO. The
allocated space provides a “landing zone” for requests that
software process (the application software) will subse-
quently issue using the FMA descriptor. The software pro-
cess determines which scheme will be used at the time the
space is allocated.

In some embodiments, the Controlled Discard scheme
operates as follows: Software issues an allocation request to
the deadlock-avoidance engine indicating the amount of
space it needs for a block of requests it is about to issue and
can immediately follow the allocation request with those
requests. The deadlock-avoidance engine allocates space for
the entire block if it has sufficient space available. Other-
wise, the deadlock-avoidance engine discards all requests of
the block. An indication is returned to application software

45

50

state information that it requires to be able to retry the block
until it determines that the allocation for the block was
accepted by the deadlock-avoidance engine. Application
software may issue successive blocks in pipeline fashion
without first waiting for the allocation success or failure
notification of prior blocks.

In some embodiments, the Persistent Reservation scheme
operates as follows: A software process (application soft-
ware) issues an allocation request to the deadlock-avoidance
engine indicating an amount of space to be reserved within
the deadlock-avoidance FIFO for a particular FMA descrip-
tor. An indication is returned to the application software of
whether or not the allocation was successful. Once the
application software receives an indication that the alloca-
tion was successful, it may use that FMA descriptor to send
any number of requests, and all will be accepted by the
deadlock-avoidance engine provided that the amount of
space being occupied in the FIFO, for the descriptor, never
exceeds the allocated amount. The scheme includes a con-
cept of DLA Markers that application software can insert
into the FIFO. When a Marker exits the FIFO, a notification

US 10,129,329 B2

17

is delivered back to the application software. In this way,
application software can determine when a series of prior
requests have been flushed from the FIFO. Provided that the
allocated FIFO space is never exceeded, application soft-
ware may issue additional requests without first waiting for
the notification from a prior Marker to return. This scheme
does not require that application software be able to retry
requests that have already been issued.

The Persistent Reservation scheme allocates portions of
the deadlock-avoidance engine’s request buffering capacity
to particular FMA descriptors in a relatively static fashion.
The Controlled Discard scheme allows the remainder of the
buffering capacity to be allocated to FMA descriptors
dynamically on a transaction-by-transaction basis. The Con-
trolled Discard scheme may be best suited to message-
oriented traffic. The Persistent Allocation scheme may work
better in situations where previously issued requests cannot
easily be reissued.

The acceptance logic determines whether or not there is
sufficient unallocated space available in the FIFO to satisty
incoming allocation requests and does not honor allocation
requests when space cannot be allocated. Notification of
allocation success or failure is provided through completion-
queue events (CQEs). A FIFO-fill-level status may be peri-
odically written to the local node’s memory. When using the
Controlled Discard scheme, application software may inter-
rogate the fill-level status prior to attempting to issue a block
of requests to determine whether the space allocation for the
block is likely to be successful. When using the Persistent
Allocation scheme, application software may determine
when a series of requests has been flushed through the FIFO
by using Markers that it can insert into the FIFO. A priority
mechanism is provided such that some portion of the space
in the FIFO can be reserved for Controlled-Discard-mode
requests associated with FMA descriptors that have been
marked as having high priority.

In some embodiments, the FMA unit can store a plurality
of parameters for FMA operations. FMA descriptor param-
eters are used to perform FMA transfers, launch BTE
operations, and initiate collective operations. Every FMA
request must identify the FMA descriptor to use for that
request. In some embodiments, there are 127 independent
FMA descriptors.

In some embodiments, application software causes the
FMA function to perform some operation by sending the
FMA function an ALLOC_SEQID message. In some
embodiments wherein the FMA function is implemented in
hardware, application software causes FMA hardware to
perform some function by storing to an FMA “doorbell”. A
doorbell, also called a doorbell interrupt, is a memory-
addressable location in the FMA hardware that, when writ-
ten to, causes the FMA to execute a function. FMA doorbells
include ALLOC_SEQID used to indicate the start of a
transaction, and SEQCMP used to indicate the completion of
a transaction.

In some embodiments, network requests generated using
the FMA function are issued within the context of transac-
tions. Application software must signal the start of a trans-
action by requesting a new ssid value through a store to the
relevant FMA descriptor with an ALLOC_SEQID message.
In some embodiments wherein the FMA function is imple-
mented in hardware, application software stores to the
relevant FMA descriptor’s ALLOC_SEQID doorbell. Soft-
ware signals the end of the transaction by releasing the ssid
value through a store to the relevant FMA descriptor with a
SEQCMP message. In some embodiments wherein the FMA
function is implemented in hardware, application software

10

15

20

25

30

35

40

45

50

55

60

65

18
signals the end of the transaction by releasing the ssid value
through a store to the SEQCMP doorbell. All network
requests issued between these two messages are part of the
transaction. It is expected that when using Controlled Dis-
card, one or more space allocations will be used for each
transaction.

In some embodiments, there is a limit to the maximum
amount of space in the deadlock-avoidance FIFO that soft-
ware is allowed to reserve in a single allocation, a “maxi-
mum-allocation credit.” If the size of the entire transaction
is less than the maximume-allocation credit, space for the
transaction, in the deadlock-avoidance FIFO, can be allo-
cated in a single block. Otherwise, the transaction must be
divided into a series of transaction blocks with space allo-
cated independently for each block. The requests of each
transaction block can immediately follow the ALLOC_SE-
QID request (also called ALLOC_SEQID doorbell) that was
used to reserve space for the block. Successive blocks,
together with their space-allocation requests, can be issued
one after the other without intervening delays.

In some embodiments, to reduce the overhead associated
with managing deadlock avoidance, the ALLOC_SEQID
and SEQCMP messages (also called doorbells) are used to
signal the start and end of each transaction block as well as
the start and end of each transaction. If the entire transaction
can be issued in a single block, the number of requests that
need to be issued is no greater than it would need to be in
the absence of the deadlock-avoidance functionality.

In some embodiments, when using a Persistent Reserva-
tion, application software will most likely issue the space-
allocation request, and check for confirmation that the
allocation was successtul, before sending any of the requests
of the transaction(s) that it is scheduled to issue using the
space reservation. In this way, it will not be necessary to
reissue the requests of the transaction(s) due to discard by
the deadlock avoidance block. Once a Persistent Reservation
has been established, any number of transactions may be
issued using that reservation.

As the quantity of requests issued using a Persistent
Reservation is not limited, application software must limit
the rate at which it issues requests so as not to overflow its
reserved space. It does this by inserting Marker requests into
the FIFO. A Marker returns a notification when it exits the
FIFO, providing application software with a mechanism for
tracking when all requests issued prior to the Marker have
been flushed from the FIFO. By limiting the number of
requests issued between Markers, and, when necessary,
waiting for a Marker notification to return before issuing
more requests, application software is kept from overflow-
ing its space allocation.

In some embodiments, in addition to its usage for signal-
ing the start of a new transaction to the SSID function 243,
the ALLOC_SEQID message (also called a doorbell) is also
used to request the allocation of space in the deadlock-
avoidance FIFO and to indicate whether the space is being
requested for a Controlled Discard transaction block or for
a Persistent Reservation. To facilitate these additional
usages, in some embodiments, the following fields are
included in the ALLOC_SEQID message (in some embodi-
ments, the message contains 64 bits):

1. TRANSACTION_START—When set, indicates the
start of a new transaction.

2. DISCARD_RESET—Indicates that this is the first
reissued block once blocks have been discarded by the FMA
when using Controlled Discard. Once the deadlock-avoid-
ance engine denies a space-allocation request for a particular
FMA descriptor, it denies all space-allocation requests

US 10,129,329 B2

19

received for that descriptor, regardless of space availability
within the deadlock-avoidance FIFO, until an allocation
request is received in which the DISCARD_RESET bit is
set.

3. ALLOC_STATUS_RESET—When set, cancel the gen-
eration of an allocation status CQE that may still be pending
at the time this allocation request is received.

4. CREDITS_REQUIRED—Value representing
amount of FIFO space being requested.

5. DLA_REISSUE—This bit should be set if the
ALLOC_ SEQID message is being performed in the course
of reissuing all or part of a previously issued transaction as
a consequence of a previously unsuccessful Controlled
Discard allocation attempt.

6. BLOCK_ID—This value is returned within allocation
status CQEs to identify the allocation request(s) to which the
CQE corresponds. Application software should increment
this value with each allocation request issued or reissued.

7. STATUS_INTERVAL—This field controls how fre-
quently the deadlock-avoidance logic generates allocation
status CQEs for successful allocations.

8. DLA_ALLOC_CD—When set, indicates space is to be
allocated in Controlled Discard mode.

9. DLA_ALLOC_PR—When set, indicates space is to be
allocated in Persistent Reservation mode.

10. DLA_HIGH_PRIORITY—Identifies whether or not
transactions issued using the FMA descriptor in Controlled
Discard mode are considered to be high priority.

In some embodiments, in addition to its usage for signal-
ing the end of a transaction to the SSID function 243, the
SEQCMP message is also used to terminate a previous FIFO
space allocation. To facilitate this additional usage, the
following fields are included in the SEQCMP message (in
some embodiments, this message contains 64 bits):

1. TRANSACTION_END.—. This bit is set to 1 to signal
the end of a transaction to the SSID function 243.

2. SEQCMP_DLA_DEALLOC.—. This bit is set to 1 to
indicate that the current FIFO space allocation should be
terminated.

In some embodiments, admittance logic of the deadlock-
avoidance engine generates allocation status CQEs in reac-
tion to FIFO space-allocation requests that it receives.
Space-allocation requests are generated by application soft-
ware that sends an FMA descriptor ALLOC_SEQ_ID mes-
sage. The logic for generating allocation-status CQEs oper-
ates on a per-FMA-descriptor basis. In some embodiments,
there is not a fixed one-for-one (or one-for-n) relationship
between the number of allocations attempted and the num-
ber of these CQEs generated. Instead, so that it is never
necessary to stall the processing of subsequent space-allo-
cation requests while waiting for the CQE status of a
previous allocation to be issued, each CQE may report the
status of a series of consecutive space-allocation requests.
This means that even if software requests an allocation-
status CQE for every allocation attempt (STATUS_INTER-
VAL=1), these CQEs will not necessarily be generated this
frequently. An allocation-status CQE is guaranteed to be
issued at some point after each allocation request with
STATUS_INTERVAL=1, but if software has continued to
issue more allocation requests while waiting for that CQE,
it is possible that one or more of these additional requests
will also have been received and processed before the CQE
is issued. In this case, the CQE reports the status of all
allocation requests processed up to the time that the CQE
actually is issued.

In some embodiments, the admittance logic generates a
CQE if it has the necessary flow control credits and if a CQE

the

10

20

25

30

35

40

45

50

55

60

65

20

is ready to be generated. A CQE is ready to be generated if,
since the latter of the last generated CQE or the last
allocation request with ALLOC_STATUS_RESET set to 1,
one or more unsuccesstul space allocation attempts have
occurred, including, possibly, the last request with ALLOC_
STATUS_RESET set to 1, or a space allocation request has
been received for which STATUS_INTERVAL is less than
or equal to the number of space allocation requests that have
been received since the latter of the last CQE that was
generated or the last allocation request with ALLOC_STA-
TUS_RESET set to 1 (and STATUS_INTERVAL is not
equal to 0).

In some embodiments, when a CQE is generated, it
indicates the allocation status of all space-allocation requests
since the latter of the last CQE generated or the last
allocation request with ALLOC_STATUS_RESET set to 1.
When a CQE is generated, it is issued using the DLA_CQH
value included in the most recently received space-alloca-
tion request.

In some embodiments, Marker notifications are generated
when Markers exit the deadlock-avoidance FIFO. The
removal of requests from the FIFO is never stalled to wait
for a Marker notification to be delivered. If, for a particular
FMA descriptor, another Marker exits the FIFO while the
generation of a prior Marker notification is still pending, the
earlier Marker notification is discarded and only the most
recent notification is delivered.

On a per-FMA-descriptor basis, the Marker-notification
logic generates a Marker-notification CQE if it has the
necessary flow-control credits and if a Marker notification is
ready to be generated. A Marker notification is ready to be
generated if, since the last notification was generated,
another Marker has exited the deadlock-avoidance FIFO.

In some embodiments, the logic for maintaining the
deadlock-avoidance FIFO fill level and determining the
success or failure of space-allocation attempts uses the
variables described here. Together, these variables represent
the FIFO fill status. In some embodiments, these variables
are stored in a control block in a node’s memory. In other
embodiments wherein the DL A function is implemented in
hardware, these variables are stored in memory-mapped
registers (MMR).

1. MAX_CREDITS—This value represents the overall
maximum amount of space that may be consumed in the
FIFO. A space-allocation request is only successful if the
sum of the FIFO space consumed by all Controlled Discard
requests, reserved for all types of requests, and being
requested, is less than or equal to this value. This is a
software-configured value that should only be changed
during node initialization.

2. MAX_LO_CD_CREDITS—A low-priority Controlled
Discard space-allocation request is only successful if the
sum of the FIFO space consumed by low-priority Controlled
Discard requests, reserved for low-priority Controlled Dis-
card requests, and being requested, is less than or equal to
this value. This is a software-configured value that is only
expected to be changed during node initialization. This value
must be less than or equal to MAX_CREDITS.

3. MAX_HI_CD_CREDITS—A high-priority Controlled
Discard space-allocation request is only successful if the
sum of the FIFO space consumed by high-priority Con-
trolled Discard requests, reserved for high-priority Con-
trolled Discard requests, and the space being requested, is
less than or equal to this value. This is a software-configured
value that is only expected to be changed during node
initialization. This value must be less than or equal to
MAX_CREDITS.

US 10,129,329 B2

21

4, MAX_PR_CREDITS—A Persistent Reservation
space-allocation request is only successful if the sum of the
space being requested and all space already reserved for
Persistent Reservations is less than or equal to this value.
This is a software-configured value that is only expected to
be changed during node initialization. This value must be
less than or equal to MAX_CREDITS.

5. MAX_LO_CD_PR_CREDITS—A low-priority Con-
trolled Discard space-allocation request or a Persistent Res-
ervation space-allocation request is only successful if the
sum of the FIFO space consumed by low-priority Controlled
Discard requests, the FIFO space reserved for low-priority
Controlled Discard requests, the FIFO space reserved for
Persistent Reservations, and amount of space being
requested, is less than or equal to this value. This is a
software-configured value that is only expected to be
changed during node initialization. This value must be less
than or equal to MAX_CREDITS.

6. MAX_1.O_HI_CD_CREDITS—A low- or high-prior-
ity Controlled Discard space-allocation request is only suc-
cessful if the sum of the FIFO space consumed by all
Controlled Discard requests, the FIFO space reserved for all
Controlled Discard requests, and the amount of space being
requested, is less than or equal to this value. This is a
software-configured value that is only expected to be
changed during node initialization. This value must be less
than or equal to MAX_CREDITS.

7. MAX_HI_CD_PR_CREDITS—A high-priority Con-
trolled Discard space-allocation request or a Persistent Res-
ervation space-allocation request is only successful if the
sum of the FIFO space consumed by high-priority Con-
trolled Discard requests, the FIFO space reserved for high-
priority Controlled Discard requests, the FIFO space
reserved for Persistent Reservations, and the amount of
space being requested, is less than or equal to this value. This
is a software-configured value that is only expected to be
changed during node initialization. This value must be less
than or equal to MAX_CREDITS.

8. MAX_CD_ALLOC_CREDITS—This value repre-
sents the maximum amount of space that is allowed to be
allocated with a single Controlled Discard space allocation
request. This is a software-configured value that is only
expected to be changed during node initialization. This value
must be less than or equal to MAX_CREDITS.

9. MAX_PR_ALLOC_CREDITS—This value represents
the maximum amount of space that is allowed to be allocated
with a single Persistent Reservation allocation request. This
is a software-configured value that is only expected to be
changed during node initialization. This value must be less
than or equal to MAX_CREDITS.

10. CONSUMED—This calculated value represents the
total amount of space, in credits, actually occupied in the
FIFO. This value increases with each new request pushed
into the FIFO and decreases with each request removed from
the FIFO.

11. LO_CD_CONSUMED—This calculated value repre-
sents the amount of space actually occupied in the FIFO for
low-priority Controlled Discard requests. This value
increases with each new request pushed into the FIFO if the
corresponding descriptor is in low-priority Controlled Dis-
card mode as indicated by the descriptor variables CD_AC-
TIVE_i=1 and HP_ACTIVE_i=0. This value decreases with
each low-priority Controlled Discard request removed from
the FIFO.

12. HI_CD_CONSUMED—This calculated value repre-
sents the amount of space, in credits, actually occupied in the
FIFO for high-priority Controlled Discard requests. This

10

15

20

25

30

35

40

45

50

55

60

65

22

value increases with each new request pushed into the FIFO
if the corresponding descriptor is in high-priority Controlled
Discard mode as indicated by the descriptor variables
CD_ACTIVE_i=1 and HP_ACTIVE_i=1. This value
decreases with each high-priority Controlled Discard
request removed from the FIFO.

13. PR_CONSUMED—This calculated value represents
the amount of space, in credits, actually occupied in the
FIFO for Persistent Reservation requests. This value
increases with each new request pushed into the FIFO if the
corresponding descriptor is in Persistent Reservation mode
as indicated by the descriptor variables PR_ACTIVE_i=1,
CD_ACTIVE_i=0. This value decreases with each Persis-
tent Reservation request removed from the FIFO.

14. CONSUMED_PR_CREDITS_i—This calculated
value represents the amount of space, in credits, occupied in
the FIFO for Persistent Reservation requests associated with
FMA descriptor “i”. A separate instance of this variable
exists for each FMA descriptor.

15. LO_CD_RESVD—This calculated value represents
the total amount of unoccupied FIFO space, in credits,
reserved for low-priority Controlled Discard requests.

16. HI_CD_RESVD—This calculated value represents
the total amount of unoccupied FIFO space, in credits,
reserved for high-priority Controlled Discard requests.

17. PR_RESVD—This calculated value represents the
total amount of FIFO space, in credits, reserved for Persis-
tent Reservation requests. Persistent Reservation requests
that have been received and are present within the FIFO
occupy space that is accounted for with this value.

18. RESVD_CREDITS_i—This calculated value repre-
sents the amount of FIFO space, in credits, currently
reserved for FMA descriptor “i”. This value is descriptor i’s
contribution to either LO_CD_RESVD, HI_CD_RESVD, or
PR_RESVD. A separate instance of this variable exists for
each FMA descriptor.

19. Allocation type: CD_ACTIVE_i, PR_ACTIVE_i,
HP_ACTIVE_i—These values are set by the deadlock-
avoidance engine when space is allocated for a descriptor,
and are used to record whether the type of the allocation is
low-priority Controlled Discard, high-priority Controlled
Discard, or Persistent Reservation. These values are subse-
quently used to tag requests entered into the FIFO in order
to enable update of the correct *_CONSUMED variable as
requests are removed from the FIFO. Separate instances of
these variables exist for each FMA descriptor.

20. PR_RELEASE PENDING _i—This value is asserted
between when that the deadlock-avoidance logic receives a
request to release a Persistent Reservation associated with
descriptor “i”, and when the reservation is actually released.
Persistent Reservations are not released until CONSUMED _
PR_CREDITS i drains to 0. Requests to allocate space in
the FIFO for descriptor “i”, that are received while this value
is asserted, are not honored. A separate instance of this
variable exists for each FMA descriptor.

In some embodiments, the various credit limits to which
the space-allocation requests are subject, are designed to
allow some minimum portion of the FIFO to be reserved for
requests of one or more of the allocation types (low-priority
Controlled Discard, high-priority Controlled Discard, Per-
sistent Reservation), and to allow sharing of the remaining
space in the FIFO between different allocation types.

In some embodiments, a request is a Controlled-Discard-
mode request if it is a space-allocation request with
DLA_ALLOC_CD=1 and PR_ACTIVE_i indicates a Per-
sistent-Reservation-mode allocation is not already active, or
if CD_ACTIVE_i indicates space is allocated for Controlled

US 10,129,329 B2

23

Discard mode. When CD_ACTIVE i indicates that a Con-
trolled-Discard-mode allocation is already active, a request
to allocate space is unsuccessful and is rejected if DLA_AL-
LOC_PR=1 or if TRANSACTION_START=1. A rejected
space-allocation request terminates any allocation already
active. The following paragraphs describe DL A processing
for Controlled Discard Mode Requests.

A request to allocate space with DLA_ALLOC_CD=1
and TRANSACTION_START=0 is valid and may be suc-
cessful regardless of whether or not CD_ACTIVE_i indi-
cates that a Controlled-Discard-mode allocation is already
active. Such a request attempts to allocate new space by
performing the following steps.

In some embodiments, a request to allocate space for a
Controlled Discard block is successful if all of the following
are true:

The previous allocation request, for the descriptor, was

successful or DISCARD_RESET is equal to 1

An allocation-status CQE in which one or more unsuc-
cessful allocation attempts is being reported is not
pending. (An allocation request with ALLOC_STA-
TUS_RESET equal to 1 cancels any allocation status
CQE that may be pending from previous unsuccessful
allocation attempts.)

CREDITS_REQUIRED is less than or equal to MAX_
CD_ALLOC_CREDITS.

MAX_CREDITS is greater than or equal to LO_CD_
CONSUMED+HI_CD_CONSUMED+LO_CD_
RESVD+HI_CD_RESVD+PR_RESVD+CRED-
ITS_REQUIRED.

MAX _x_CD_CREDITS is greater than or equal to
x_CD_CONSUMED+x_CD_RESVD+CRED-
ITS_REQUIRED. x is replaced by “HI” or “LO”
according to whether the allocation request is high or
low priority.

MAX_T1.O_HI_CD_CREDITS is greater than or equal to
LO_CD_CONSUMED+HI_CD_CONSUMED+
LO_CD_RESVD+HI_CD_RESVD+CREDITS_RE-
QUIRED.

MAX_x_CD_PR_CREDITS is greater than or equal to
x_CD_CONSUMED+x_CD_RESVD+PR_RESVD+
CREDITS_REQUIRED. x is replaced by “HI” or “LO”
according to whether the allocation request is high or
low priority.

In some embodiments, if the new Controlled Discard
allocation is successful and a Controlled Discard allocation
is already active, the unused credits from the already active
allocation are released by subtracting RESVD_CREDITS_i
from x_CD_RESVD. This occurs after the preceding tests to
determine if the allocation request can be honored and
before the actions noted in the following paragraph.

If the new allocation is successful, x_CD_RESVD is
increased by CREDITS_REQUIRED and RESVD_CRED-
ITS_i is set equal to CREDITS_REQUIRED.

In the preceding paragraphs, x is replaced by “HI” or
“LO” according to whether the new allocation request is
high or low priority. CD_ACTIVE_i is set to 1 to indicate
that a Controlled-Discard-mode allocation is active.
HP_ACTIVE_i is set to either 0 or 1, as appropriate, to
indicate the allocation is either low- or high priority.
PR_ACTIVE_i should be 0.

In some embodiments, if a new Controlled Discard allo-
cation is not successful and a Controlled Discard allocation
is already active, the already active allocation is terminated.
If the allocation request is successful and must also be
entered into the FIFO (TRANSACTION_START=1), it is
also subject to Per-Request Processing after Block Alloca-
tion has been performed.

10

15

20

25

30

35

40

45

50

55

60

65

24

In some embodiments, when a request is received, it is
discarded if it does not correspond to an FMA descriptor for
which a successful allocation is currently active.

If a request is accepted, RESVD_CREDITS_i and
x_CD_RESVD are each decreased by the amount of space
actually required for the request and x_CD_CONSUMED is
increased by the amount of space required for the request (x
is replaced by “HI” or “LO” according to whether HP_AC-
TIVE_i corresponds to high or low priority Controlled
Discard mode), and the request is pushed into the FIFO.

As requests are removed from the FIFO, y_ CONSUMED
is decreased by the amount of space that was being con-
sumed by the request (y is replaced by “HI_CD”, “LO_CD”,
or “PR” according to the type indicated in the side infor-
mation contained in the removed request). CONSUMED_
PR_CREDITS i is also decreased when Persistent Reser-
vation requests are removed from the FIFO.

The variable “CONSUMED” must always represent the
amount of space actually in use within the FIFO. Therefore
this value increases when the request is pushed into the
FIFO. This value decreases by the appropriate amount with
each request removed from the output of the FIFO. This
value is O when the FIFO is empty. If CONSUMED is 0,
HI_CD_CONSUMED, LO_CD_CONSUMED, PR_CON-
SUMED, and CONSUMED_PR_CREDITS_i should also
all be 0.

In some embodiments, when a SyncComplete request in
which SEQCMP_DLA_DEALLOC=1 or a DLAMarker
request in which DLA_MARKER_DEALLOC=1 is
received, the following occurs:

x_CD_RESVD is reduced by RESVD_CREDITS_i. This
effectively returns reserved, but unused, credits to the
pool of free space available for future allocations (x is
replaced by “HI” or “LO” according to whether
HP_ACTIVE_i corresponds to high-priority or low-
priority Controlled-Discard mode).

RESVD_CREDITS i is set to 0. This ensures no further
requests are accepted until another successful alloca-
tion request occurs.

CD_ACTIVE_i is cleared to 0 to indicate that an active
space allocation does not exist. Terminate the transac-
tion block in a maximum-sized SyncComplete request.

In some embodiments, as each request of a transaction
block is received, the admittance logic verifies that there is
space available for the request. Space is available for a
Controlled Discard request if RESVD_CREDITS_i is
greater than or equal to the sum of the space actually
required for the request and, if the request is not either a
SyncComplete request or a Marker request issued with
DLA_MARKER_DEALLOC=1, the space that would be
required to terminate the transaction block in a maximum-
sized SyncComplete request. If space is not available for the
request, the entire request is dropped and an overflow is
considered to have occurred for the current FIFO space
allocation. If the dropped request corresponds to a request
that is normally forwarded toward the SSID function 243, an
overflow is also considered to have occurred for the current
transaction.

In some embodiments, DL A records whether the current
FIFO space allocation has been affected by an overflow and
whether the current transaction has been affected by an
overflow. Overflows within the current FIFO space alloca-
tion are reported through the Marker-notification CQE
mechanism. This reporting mechanism may be useful to
software employing Persistent Reservations; it is not likely
to be useful when Controlled Discard is being used. Over-
flows within a transaction are reported as follows: When a

US 10,129,329 B2

25
SyncComplete with TRANSACTION_END=1 is received,
if an overflow has occurred within the transaction, A_STA-
TUS_DLA_OVERFLOW is reported in the “Istatus™ field of
the copy of the SyncComplete entered into the FIFO for
forwarding to the SSID function 243 via the TARB 242. The
SSID function 243 will report the error in the source-side
CQE that it can issue following the completion of the overall
transaction. If destination-side message notification
(DSMN) is enabled for the transaction, the error is also
reported to the destination endpoint. In some embodiments,
an allocation-overflow error is potentially recoverable by
repeating the overall transaction in which the error occurred.

In some embodiments, a request is a Persistent-Reserva-
tion-mode request if it is a space-allocation request with
DLA_ALLOC_PR=1 and CD_ACTIVE_1i indicates a Con-
trolled-Discard-mode allocation is not already active, or if
PR_ACTIVE_i indicates space is already allocated for Per-
sistent Reservation mode. The following paragraphs
describe DLA processing for Persistent-Reservation-mode
requests.

In some embodiments, when PR_ACTIVE_i indicates
that a Persistent-Reservation-mode allocation is already
active, a request to allocate space is unsuccessful and is
rejected if DLA_ALLOC_PR=1orif DLA_ALLOC_CD=1.
A rejected space-allocation request terminates any allocation
already active. In some embodiments, a request to allocate
space for a Persistent Reservation is successful if all of the
following are true:

The previous allocation request, for the descriptor, was

successful or DISCARD_RESET is equal to 1.

An allocation-status CQE, in which one or more unsuc-
cessful allocation attempts is being reported, is not
pending. (An allocation request with ALLOC_STA-
TUS_RESET equal to 1 cancels any allocation status
CQE that may be pending from previous unsuccessful
allocation attempts.)

CREDITS_REQUIRED is less than or equal to MAX_
PR_ALLOC_CREDITS.

MAX_CREDITS is greater than or equal to LO_CD_
CONSUMED+HI_CD_CONSUMED+LO_CD_
RESVD+HI_CD_RESVD+PR_RESVD+CRED-
ITS_REQUIRED.

MAX_PR_CREDITS is greater than or equal to
PR_RESV+CREDITS_REQUIRED.

MAX_1.O_CD_PR_CREDITS is greater than or equal to
LO_CD_CONSUMED+LO_CD_RESVD+
PR_RESVD+CREDITS_REQUIRED.

MAX_HI_CD_PR_CREDITS is greater than or equal to
HI_CD_CONSUMED+HI_CD_RESVD+
PR_RESVD+CREDITS_REQUIRED.

If'the allocation is successful, PR_RESVD is increased by
CREDITS_REQUIRED and RESVD_CREDITS i is set
equal to CREDITS_REQUIRED. PR_ACTIVE _iis setto 1
to indicate that a Persistent Reservation is active. CD_AC-
TIVE_i should be 0. If the allocation request is successful
and must also be entered into the FIFO (TRANSACTION_
START=1), it is also subject to Per-Request Processing after
Block Allocation has been performed.

In some embodiments, when a request is received, it is
discarded if it does not correspond to an FMA descriptor for
which a successful allocation is currently active. It is also
discarded if PR_RELEASE_PENDING i=1. As each
request of a successfully allocated block is received, it is
admitted or discarded. If the request is accepted, the fol-
lowing occurs:

5

20

25

30

40

45

55

60

26

PR_CONSUMED and CONSUMED_PR_CREDITS_i
are increased by the amount of space required for the
request.

The request is pushed into the FIFO.

As requests are removed from the FIFO, y_ CONSUMED
is decreased by the amount of space that was being con-
sumed by the request (y is replaced by “HI_CD”, “LO_CD”,
or “PR” according to the type indicated in the information
contained in the removed request). CONSUMED_PR_
CREDITS i is also decreased when Persistent Reservation
requests are removed from the FIFO.

The variable “CONSUMED” must always represent the
amount of space actually in use within the FIFO. Therefore
this value increases when the request is pushed into the
FIFO. This value decreases by the appropriate amount with
each request removed from the output of the FIFO. This
value is O when the FIFO is empty. If CONSUMED is 0,
HI_CD_CONSUMED, LO_CD_CONSUMED, PR_CON-
SUMED, and CONSUMED_PR_CREDITS_i should also
all be 0.

In some embodiments, when a SyncComplete request in
which SEQCMP_DLA_DEALLOC=1 or a DLAMarker
request in which DLA_MARKER_DEALLOC=1 is
received, PR_RELEASE_PENDING i is set to 1. A Persis-
tent Reservation is not terminated until all requests in the
FIFO that are accounted for by that reservation have been
removed from the FIFO. As Persistent Reservation requests
are removed from the FIFO, if PR_RE-
LEASE_PENDING_i=1 and CONSUMED_PR_CRED-
ITS_i decrements to 0, the reservation is released by per-
forming the following operations:

PR_RESVD is reduced by RESVD_CREDITS_i. This
returns the credits that were reserved for the Persistent
Reservation back to the pool of free space available for
future allocations.

RESVD_CREDITS i is set to 0. This ensures no further
requests are accepted until another successful alloca-
tion request occurs.

PR_ACTIVE i is cleared to O to indicate that an active
space allocation does not exist.

PR_RELEASE _PENDING i is cleared to 0.

In some embodiments, as each request is received, the
admittance logic verifies that there is space available for the
request. Space is available for a Persistent Reservation
request if RESVD_CREDITS_i is greater than or equal to
the sum of CONSUMED_PR_CREDITS_i, the space actu-
ally required for the request, and (if the request is not either
a SyncComplete request or a Marker request issued with
DLA_MARKER_DEALLOC=1) the space that would be
required to terminate the transaction block in a maximum-
sized SyncComplete request. If space is not available for the
request, the entire request is dropped and an overflow is
considered to have occurred for the current FIFO space
allocation. If the dropped request corresponds to a request
that is normally forwarded toward the SSID function 243, an
overflow is also considered to have occurred for the current
transaction.

In some embodiments, the deadlock-avoidance engine
(DLA) records whether the current FIFO space allocation
has been affected by an overflow and whether the current
transaction has been affected by an overflow. Overtlows
within the current FIFO space allocation are reported
through the Marker-notification CQE mechanism. This
reporting mechanism may be useful to software employing
Persistent Reservations in situations where Markers occur
relatively frequently while transactions are relatively long
lived. In some embodiments, overflows within a transaction

US 10,129,329 B2

27

are reported as follows: When a SyncComplete with
TRANSACTION_END=1 is received, if an overflow has
occurred within the transaction, A_STATUS_DLA_OVER-
FLOW is reported in the Istatus field of the copy of the
SyncComplete entered into the FIFO for forwarding to the
SSID function 243 via the TARB 242. The SSID function
243 will report the error in the source-side CQE that it can
issue following the completion of the overall transaction. If
destination-side message notification (DSMN) is enabled for
the transaction, the error is also reported to the destination
endpoint. In some embodiments, an allocation-overtlow
error is potentially recoverable by repeating the overall
transaction in which the error occurred.

In some embodiments, the requests of a Controlled-
Discard-transaction block that software may continue to
send even though the space allocation for the block may not
have been successful essentially waste bandwidth on the
processor interface. This wasted bandwidth could be used
for requests associated with other FMA descriptors for
which space has been successfully allocated and for non-
FMA traffic, such as the read completions that are used to
service BTE Put and Send requests. To reduce the amount of
bandwidth wasted, and also to reduce contention between
FMA descriptors when the total number of allocated credits
is near the limit, the DLA block periodically writes a
FIFO-fill-level report to processor memory. Prior to starting
each transaction block, software can interrogate the FIFO’s
allocation-status report to determine whether the allocation
for the block is likely to be successful.

In some embodiments, the FIFO capacity and allocation
sizes are expressed in units of “credits”. As the data received
and forwarded by the deadlock-avoidance unit are in the
form of NIF flits, an obvious mapping of credits to actual
physical storage is to equate one credit to one NIF flit. In
some embodiments, a NIF flit (or sub-packet) is 144 bits, or
18 bytes. With this mapping, 64-byte-cacheline-sized Put
requests would make efficient use of the FIFO storage
capacity, as each request would fully consume five flits.
However, random Puts and AMOs would not; these each
consume two flits, but half of the second flit is unused.
Therefore, to improve the efficiency with which the FIFO
storage capacity is used for these types of requests, the
granularity of the DLA block’s credit accounting is actually
half of a flit, or 72 bits. For these types of requests, this
effectively increases the FIFO capacity by 33%. The CRED-
ITS_REQUIRED value of each allocation request must
account for any “overhead” data that also passes through the
deadlock-avoidance FIFO; that is, in the data being sent,
there may be additional control bits or bytes that also get
stored in the FIFO.

The FIFO needs to be large enough to allow for efficient
FMA operation without excessive bandwidth being wasted
by the transmission of Controlled-Discard-mode transaction
blocks that failed to allocate in the FIFO. The FIFO size
should also be large enough to support as many simultane-
ous Persistent Reservations as necessary with space still left
for Controlled Discard allocations, and with the size of the
Persistent Reservations being large enough to support a
sufficient request issue rate per reservation. It is possible for
all of the space in the FIFO to become allocated before the
FIFO-fill-level report, indicating that the FIFO is becoming
full, is able to be made visible in processor memory. Starting
from an empty FIFO with no space reserved, if some
reasonable number of software processes, using different
FMA descriptors, each start sending a Controlled-Discard-
mode transaction block at about the same time, there should
be a high probability that space is able to be allocated for all

10

15

20

25

30

35

40

45

50

55

60

65

28

of the blocks. To reduce overhead in software as well as in
processor-to-network bandwidth, the maximum allowed size
for each block should not be too small. Ideally it is large
enough to accommodate most transactions issued using
FMA.

In some embodiments, a FIFO size of about 64K bytes
(7280 credits) is sufficiently large, in the absence of any
Persistent Reservations, to accommodate 64 simultaneous
Put transactions, with each having a size of about 640 bytes
of sequential user data. However, in some embodiments that
provide Persistent Reservations for a sufficiently large num-
ber of cores, an even larger FIFO size may be desirable. In
some embodiments, the size of the FIFO is 16384 credits.
This value is indicated by hardware through the reset value
ofthe A_NIC_DLA_CFG_MAX MMR. Assuming a round-
trip latency from the processor to network and back of 500
ns, this FIFO size is sufficient to reserve four times the
round-trip latency for Controlled Discard allocations (3200
credits) with 206 credits (68 8-byte Put requests) available
for each of 64 Persistent Reservations. In some embodi-
ments, this is sufficient to support an issue rate for the cores
using the Persistent Reservations of 10 ns per core with DLA
Markers inserted every 16 requests.

In some embodiments, the deadlock-avoidance function-
ality can be disabled. When deadlock avoidance is disabled,
the DLA operates as follows.

All requests that would normally pass through the FIFO,
on their way to the TARB, are entered into the FIFO
regardless of whether sufficient unused space is
reserved in the FIFO to accommodate the request.
Requests are accepted for any FMA descriptor regard-
less of whether prior space-allocation requests have
been received or have been successful.

If the FIFO is full, the deadlock-avoidance block applies
back-pressure to FMA to limit the rate at which
requests can be received to the rate at which they can
be removed from the FIFO. This is a primary difference
compared to operation when deadlock avoidance is
enabled. When it is enabled, requests are dropped if
sufficient unused space has not been pre-allocated for
the request.

FIFO-fill-level reports can still be generated. In some
embodiments, FIFO-fill-level-report generation can be
disabled.

DLA Marker notifications can still occur. In some
embodiments, DLA Marker notifications can be dis-
abled.

In some embodiments, the present invention provides a
computer-implemented method for deadlock avoidance in a
parallel-processor system, wherein the parallel-processor
system includes a plurality of nodes, wherein each one of the
plurality of nodes includes a node buffer, a processor and
local memory, wherein the plurality of nodes includes a first
node having a first node buffer, a second node having a
second node buffer, and a third node having a third node
buffer, wherein each node is operatively coupled to a plu-
rality of other nodes, and wherein a software process
executes on each one of the plurality of nodes, the method
comprising: receiving, in the first node, a first command
from a first software process executing in the processor of
the first node, to reserve N1 allocation units of space in the
first node buffer for communication between the first soft-
ware process executing in the processor of the first node and
other software processes executing in processors of other
nodes, wherein N1 is a number between one and a total size
of the first node buffer, checking whether the first node
buffer contains at least N1 unreserved allocation units of

US 10,129,329 B2

29

space to satisfy the first command, and if N1 unreserved
allocation units now exist in the first node buffer, then
reserving N1 allocation units for use by the first process but
if N1 unreserved allocation units do not now exist then
denying the first command for allocation units of space,
entering a first remote memory access request from the first
software process into the first node buffer, indicating that an
additional one of the allocation units in the first node buffer
is in use, performing a first remote memory access operation
by sending the first remote memory access request over the
network to the second node, and communicating data
between the second node and the first node based on the first
remote memory access request, removing the first remote
memory access request from the first node buffer, indicating
that one of the allocation units in the first node buffer is no
longer in use, entering a second remote memory access
request from the first software process into the first node
buffer, indicating that an additional one of the allocation
units in the first node buffer is in use, performing a second
remote memory access operation by sending the second
remote memory access request over the network to the third
node, which causes the third node to communicate data
between the third node and the first node, removing the
second remote memory access request from the first node
buffer, indicating that one of the allocation units in the first
node buffer is no longer in use, and receiving, in the first
node, a second command from a first software process
executing in the processor of the first node, to un-reserve N1
allocation units of space in the first node buffer of the first
node, and un-reserving N1 allocation units of space in the
node buffer of the first node.

In some embodiments of the method, the first node buffer
is a first-in-first-out (FIFO) buffer.

Some embodiments of the method further include: receiv-
ing, in the first node, a third command from a second
software process executing in the processor of the first node,
to reserve N2 allocation units of space in the first node buffer
for communication between the second software process
executing in the processor of the first node and other
software processes executing in processors of other nodes,
wherein N2 is a number between one and a total size of the
first node buffer, checking whether the first node buffer
contains at least N2 unreserved allocation units of space to
satisfy the third command, and if N2 unreserved allocation
units now exist in the first node buffer, then reserving N2
allocation units for use by the second process but if N2
unreserved allocation units do not now exist then denying
the third command for allocation units of space, entering a
third remote memory access request from the second soft-
ware process into the first node buffer, indicating that an
additional one of the allocation units in the first node buffer
is in use, performing a third remote memory access opera-
tion by sending the third remote memory access request over
the network to the third node, which causes the second node
to communicate data between the third node and the first
node, removing the third remote memory access request
from the first node buffer, indicating that one of the alloca-
tion units in the first node buffer is no longer in use, entering
a fourth remote memory access request from the second
software process into the first node buffer, indicating that an
additional one of the allocation units in the first node buffer
is in use, performing a fourth remote memory access opera-
tion by sending the fourth remote memory access request
over the network to the second node, which causes the
second node to communicate data between the second node
and the first node, removing the fourth remote memory
access request from the first node buffer, indicating that one

10

15

20

25

30

40

45

55

60

65

30

of the allocation units in the first node buffer is no longer in
use, and receiving, in the first node, a fourth command from
a first software process executing in the processor of the first
node, to un-reserve N2 allocation units of space in the node
buffer of the first node, and un-reserving N2 allocation units
of space in the node buffer of the first node.

In some embodiments of the method, the entering of the
first remote memory access request from the first software
process into the first node buffer further includes receiving
the first remote memory access request into a first remote
memory access unit in the first node, wherein the first remote
memory access unit enters the first remote memory access
request into the first node buffer.

Some embodiments of the method further include enter-
ing a first marker request into the first node buffer, wherein
the first marker request sends a notification to the first
software process once all prior requests in the first node
buffer have been sent.

Some embodiments of the method further include track-
ing operation requests that are sent on the network from the
first node to other ones of the plurality of nodes. In some
embodiments, the SSID 243 performs this function.

In some embodiments of the method, the communicating
of data between the second node and the first node based on
the first remote memory access request further includes
using a plurality of packets spaced apart in time for the
communicating.

In some embodiments, the present invention provides a
non-transitory computer-readable medium having instruc-
tions stored thereon for causing a suitably programmed
information processor to perform a deadlock-avoidance
method in a parallel-processor system, wherein the parallel-
processor system includes a plurality of nodes, wherein each
one of the plurality of nodes includes a node buffer, a
processor and local memory, wherein the plurality of nodes
includes a first node having a first node buffer, a second node
having a second node buffer, and a third node having a third
node buffer, wherein each node is operatively coupled to a
plurality of other nodes, and wherein a software process
executes on each one of the plurality of nodes, the deadlock-
avoidance method comprising: receiving, in the first node, a
first command from a first software process executing in the
processor of the first node, to reserve N1 allocation units of
space in the first node bufter for communication between the
first software process executing in the processor of the first
node and other software processes executing in processors
of other nodes, wherein N1 is a number between one and a
total size of the first node buffer, checking whether the first
node buffer contains at least N1 unreserved allocation units
of space to satisty the first command, and if N1 unreserved
allocation units now exist in the first node buffer, then
reserving N1 allocation units for use by the first process but
if N1 unreserved allocation units do not now exist then
denying the first command for allocation units of space,
entering a first remote memory access request from the first
software process into the first node buffer, indicating that an
additional one of the allocation units in the first node buffer
is in use, performing a first remote memory access operation
by sending the first remote memory access request over the
network to the second node, and communicating data
between the second node and the first node based on the first
remote memory access request, removing the first remote
memory access request from the first node buffer, indicating
that one of the allocation units in the first node buffer is no
longer in use, entering a second remote memory access
request from the first software process into the first node
buffer, indicating that an additional one of the allocation

US 10,129,329 B2

31

units in the first node buffer is in use, performing a second
remote memory access operation by sending the second
remote memory access request over the network to the third
node, which causes the third node to communicate data
between the third node and the first node, removing the
second remote memory access request from the first node
buffer, indicating that one of the allocation units in the first
node buffer is no longer in use, and receiving, in the first
node, a second command from a first software process
executing in the processor of the first node, to un-reserve N1
allocation units of space in the first node buffer of the first
node, and un-reserving N1 allocation units of space in the
node buffer of the first node.

In some embodiments of the non-transitory computer-
readable medium, the first node buffer is a first-in-first-out
(FIFO) buffer.

In some embodiments of the non-transitory computer-
readable medium, the medium further includes instructions
such that the method further includes receiving, in the first
node, a third command from a second software process
executing in the processor of the first node, to reserve N2
allocation units of space in the first node buffer for com-
munication between the second software process executing
in the processor of the first node and other software pro-
cesses executing in processors of other nodes, wherein N2 is
a number between one and a total size of the first node
buffer, checking whether the first node buffer contains at
least N2 unreserved allocation units of space to satisfy the
third command, and if N2 unreserved allocation units now
exist in the first node buffer, then reserving N2 allocation
units for use by the second process but if N2 unreserved
allocation units do not now exist then denying the third
command for allocation units of space, entering a third
remote memory access request from the second software
process into the first node buffer, indicating that an addi-
tional one of the allocation units in the first node buffer is in
use, performing a third remote memory access operation by
sending the third remote memory access request over the
network to the third node, which causes the second node to
communicate data between the third node and the first node,
removing the third remote memory access request from the
first node buffer, indicating that one of the allocation units in
the first node buffer is no longer in use, entering a fourth
remote memory access request from the second software
process into the first node buffer, indicating that an addi-
tional one of the allocation units in the first node buffer is in
use, performing a fourth remote memory access operation by
sending the fourth remote memory access request over the
network to the second node, which causes the second node
to communicate data between the second node and the first
node, removing the fourth remote memory access request
from the first node buffer, indicating that one of the alloca-
tion units in the first node buffer is no longer in use, and
receiving, in the first node, a fourth command from a first
software process executing in the processor of the first node,
to un-reserve N2 allocation units of space in the node buffer
of the first node, and un-reserving N2 allocation units of
space in the node buffer of the first node.

In some embodiments of the non-transitory computer-
readable medium, the medium further includes instructions
such that the entering of the first remote memory access
request from the first software process into the first node
buffer further includes receiving the first remote memory
access request into a first remote memory access unit in the
first node, wherein the first remote memory access unit
enters the first remote memory access request into the first
node buffer.

20

25

30

40

45

32

In some embodiments of the non-transitory computer-
readable medium, the medium further includes instructions
such that the method further includes entering a first marker
request into the first node buffer, wherein the first marker
request sends a notification to the first software process once
all prior requests in the first node buffer have been sent.

In some embodiments of the non-transitory computer-
readable medium, the medium further includes instructions
such that the method further includes tracking operation
requests that are sent on the network from the first node to
other ones of the plurality of nodes.

In some embodiments of the non-transitory computer-
readable medium, the medium further includes instructions
such that the communicating of data between the second
node and the first node based on the first remote memory
access request further includes using a plurality of packets
spaced apart in time for the communicating.

In some embodiments, the present invention provides a
parallel-processor system that includes: a plurality of nodes,
wherein each one of the plurality of nodes includes a node
buffer, a processor and local memory, wherein the plurality
of nodes includes a first node having a first node buffer, a
second node having a second node buffer, and a third node
having a third node buffer, wherein each node is operatively
coupled to a plurality of other nodes, and wherein a software
process executes on each one of the plurality of nodes. This
system includes:

a receiver in the first node that receives a first command
from a first software process executing in the processor of
the first node, to reserve N1 allocation units of space in the
first node buffer for communication between the first soft-
ware process executing in the processor of the first node and
other software processes executing in processors of other
nodes, wherein N1 is a number between one and a total size
of the first node buffer,

a checker that checks whether the first node buffer con-
tains at least N1 unreserved allocation units of space to
satisfy the first command, and if N1 unreserved allocation
units now exist in the first node buffer, then reserves N1
allocation units for use by the first process but if N1
unreserved allocation units do not now exist then denies the
first command for allocation units of space,

a loader that enters a first remote memory access request
from the first software process into the first node buffer, an
indicator that indicates that an additional one of the alloca-
tion units in the first node buffer is in use,

a communicator that causes performance of a first remote
memory access operation by sending the first remote
memory access request over the network to the second node,
and causes communication of data between the second node
and the first node based on the first remote memory access
request,

an unloader that removes the first remote memory access
request from the first node buffer, wherein the indicator
indicates that one of the allocation units in the first node
buffer is no longer in use,

wherein the loader enters a second remote memory access
request from the first software process into the first node
buffer,

wherein the indicator indicates that an additional one of
the allocation units in the first node buffer is in use,

wherein the communicator causes performance of a sec-
ond remote memory access operation by sending the second
remote memory access request over the network to the third
node, which causes the third node to communicate data
between the third node and the first node,

US 10,129,329 B2

33

wherein the unloader removes the second remote memory
access request from the first node buffer,

wherein the indicator indicates that one of the allocation
units in the first node buffer is no longer in use, and

wherein the receiver in the first node receives a second
command from a first software process executing in the
processor of the first node, to un-reserve N1 allocation units
of space in the first node buffer of the first node, and
un-reserves N1 allocation units of space in the node buffer
of the first node.

In some embodiments of the system, the first node buffer
is a first-in-first-out (FIFO) buffer.

In some embodiments of the system,

the receiver in the first node receives a third command
from a second software process executing in the processor of
the first node, to reserve N2 allocation units of space in the
first node buffer for communication between the second
software process executing in the processor of the first node
and other software processes executing in processors of
other nodes, wherein N2 is a number between one and a total
size of the first node buffer,

the checker checks whether the first node buffer contains
at least N2 unreserved allocation units of space to satisty the
third command, and if N2 unreserved allocation units now
exist in the first node buffer, then reserving N2 allocation
units for use by the second process but if N2 unreserved
allocation units do not now exist then denying the third
command for allocation units of space,

the loader enters a third remote memory access request
from the second software process into the first node buffer,

the indicator indicates that an additional one of the
allocation units in the first node buffer is in use,

the communicator that causes performance of a third
remote memory access operation by sending the third
remote memory access request over the network to the third
node, which causes the second node to communicate data
between the third node and the first node,

the unloader removes the third remote memory access
request from the first node buffer,

the indicator indicates that one of the allocation units in
the first node buffer is no longer in use,

the loader enters a fourth remote memory access request
from the second software process into the first node buffer,

the indicator indicates that an additional one of the
allocation units in the first node buffer is in use,

the communicator that causes performance a fourth
remote memory access operation by sending the fourth
remote memory access request over the network to the
second node, which causes the second node to communicate
data between the second node and the first node,

the unloader removes the fourth remote memory access
request from the first node buffer,

the indicator indicates that one of the allocation units in
the first node buffer is no longer in use, and

the receiver in the first node receives a fourth command
from a first software process executing in the processor of
the first node, to un-reserve N2 allocation units of space in
the node buffer of the first node, and un-reserving N2
allocation units of space in the node buffer of the first node.

In some embodiments, the loader that enters of the first
remote memory access request from the first software pro-
cess into the first node buffer further includes a receiver that
receives the first remote memory access request into a first
remote memory access unit in the first node, wherein the first
remote memory access unit enters the first remote memory
access request into the first node buffer.

In some embodiments, the loader enters a first marker
request into the first node buffer, wherein the first marker
request sends a notification to the first software process once
all prior requests in the first node buffer have been sent.

10

20

30

40

45

50

34

Some embodiments further include a tracker that tracks
operation requests that are sent on the network from the first
node to other ones of the plurality of nodes.

In some embodiments, the present invention provides a
parallel-processor system that includes: a plurality of nodes,
wherein each one of the plurality of nodes includes a node
buffer, a processor and local memory, wherein the plurality
of nodes includes a first node having a first node buffer, a
second node having a second node buffer, and a third node
having a third node buffer, wherein each node is operatively
coupled to a plurality of other nodes, and wherein a software
process executes on each one of the plurality of nodes,
means for receiving, in the first node, a first command from
a first software process executing in the processor of the first
node, to reserve N1 allocation units of space in the first node
buffer for communication between the first software process
executing in the processor of the first node and other
software processes executing in processors of other nodes,
wherein N1 is a number between one and a total size of the
first node buffer, means for checking whether the first node
buffer contains at least N1 unreserved allocation units of
space to satisfy the first command, and if N1 unreserved
allocation units now exist in the first node buffer, then
reserving N1 allocation units for use by the first process but
if N1 unreserved allocation units do not now exist then
denying the first command for allocation units of space,
means for entering a first remote memory access request
from the first software process into the first node buffer,
means for indicating that an additional one of the allocation
units in the first node buffer is in use, means for performing
a first remote memory access operation by sending the first
remote memory access request over the network to the
second node, and communicating data between the second
node and the first node based on the first remote memory
access request, means for removing the first remote memory
access request from the first node buffer, means for indicat-
ing that one of the allocation units in the first node buffer is
no longer in use, means for entering a second remote
memory access request from the first software process into
the first node buffer, means for indicating that an additional
one of the allocation units in the first node buffer is in use,
means for performing a second remote memory access
operation by sending the second remote memory access
request over the network to the third node, which causes the
third node to communicate data between the third node and
the first node, means for removing the second remote
memory access request from the first node buffer, means for
indicating that one of the allocation units in the first node
buffer is no longer in use, and means for receiving, in the
first node, a second command from a first software process
executing in the processor of the first node, to un-reserve N1
allocation units of space in the first node buffer of the first
node, and means for un-reserving N1 allocation units of
space in the node buffer of the first node.

In some embodiments of the system, the first node buffer
is a first-in-first-out (FIFO) buffer.

Some embodiments of the system further include: means
for receiving, in the first node, a third command from a
second software process executing in the processor of the
first node, to reserve N2 allocation units of space in the first
node buffer for communication between the second software
process executing in the processor of the first node and other
software processes executing in processors of other nodes,
wherein N2 is a number between one and a total size of the
first node buffer, means for checking whether the first node
buffer contains at least N2 unreserved allocation units of
space to satisfy the third command, and if N2 unreserved
allocation units now exist in the first node buffer, then
reserving N2 allocation units for use by the second process
but if N2 unreserved allocation units do not now exist then

US 10,129,329 B2

35

denying the third command for allocation units of space,
means for entering a third remote memory access request
from the second software process into the first node buffer,
means for indicating that an additional one of the allocation
units in the first node buffer is in use, means for performing
a third remote memory access operation by sending the third
remote memory access request over the network to the third
node, which causes the second node to communicate data
between the third node and the first node, means for remov-
ing the third remote memory access request from the first
node buffer, means for indicating that one of the allocation
units in the first node buffer is no longer in use, means for
entering a fourth remote memory access request from the
second software process into the first node buffer, means for
indicating that an additional one of the allocation units in the
first node buffer is in use, means for performing a fourth
remote memory access operation by sending the fourth
remote memory access request over the network to the
second node, which causes the second node to communicate
data between the second node and the first node, means for
removing the fourth remote memory access request from the
first node buffer, means for indicating that one of the
allocation units in the first node buffer is no longer in use,
and means for receiving, in the first node, a fourth command
from a first software process executing in the processor of
the first node, to un-reserve N2 allocation units of space in
the node buffer of the first node, and un-reserving N2
allocation units of space in the node buffer of the first node.

In some embodiments, the means for entering of the first
remote memory access request from the first software pro-
cess into the first node buffer further includes means for
receiving the first remote memory access request into a first
remote memory access unit in the first node, wherein the first
remote memory access unit enters the first remote memory
access request into the first node buffer.

Some embodiments of the system further include means
for entering a first marker request into the first node buffer,
wherein the first marker request sends a notification to the
first software process once all prior requests in the first node
buffer have been sent.

Some embodiments of the system further include means
for tracking operation requests that are sent on the network
from the first node to other ones of the plurality of nodes.

It is to be understood that the above description is
intended to be illustrative, and not restrictive. Although
numerous characteristics and advantages of various embodi-
ments as described herein have been set forth in the fore-
going description, together with details of the structure and
function of various embodiments, many other embodiments
and changes to details will be apparent to those of skill in the
art upon reviewing the above description. The scope of the
invention should be, therefore, determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled. In the appended claims,
the terms “including” and “in which” are used as the
plain-English equivalents of the respective terms “compris-
ing” and “wherein,” respectively. Moreover, the terms “first,
” “second,” and “third,” etc., are used merely as labels, and
are not intended to impose numerical requirements on their
objects.

What is claimed is:

1. A computer-implemented method for deadlock avoid-
ance in a parallel-processor system, wherein the parallel-
processor system includes a plurality of network nodes,
wherein each one of the plurality of network nodes includes
anode buffer, a processor and local memory, and a deadlock-
avoidance (DLA) engine, wherein the plurality of network
nodes includes a first network node having a first node

30

40

45

60

36

buffer, a second network node having a second node buffer,
and a third network node having a third node buffer, wherein
each one of the plurality of network nodes is operatively
coupled to a plurality of other network nodes over a net-
work, and wherein at least one software process executes on
the respective processor of each one of the plurality of
network nodes, the method comprising:
receiving, in the first network node, a first allocation
command from a first application software process
executing in the processor of the first network node to
reserve a first space in the first node buffer for com-
munication between the first application software pro-
cess executing in the processor of the first network
node and other application software processes execut-
ing in processors of other network nodes,
reserving the first space for use by the first application
software process,
entering a first remote memory access (RMA) request
from the first application software process into the first
node buffer,
performing a first RMA operation by sending the first
RMA request over the network to the second network
node, and communicating data between the second
network node and the first network node based on the
first RMA request,

removing the first RMA request from the first node buffer,

un-reserving the first space in the node buffer of the first
network node;

receiving, in the first network node, a second allocation
command from a second application software process
executing in the processor of the first network node, to
reserve a second space in the first node buffer for
communication between the second application soft-
ware process executing in the processor of the first
network node and other application software processes
executing in processors of other network nodes,

reserving the second space for use by the second appli-
cation software process,

entering a second RMA request from the second applica-
tion software process into the first node buffer,

performing a second RMA operation by sending the
second RMA request over the network to the third
network node, and communicating data between the
third network node and the first network node based on
the second RMA request,

removing the second RMA request from the first node
buffer, and

un-reserving of the second space in the node buffer of the
first network node.

2. The method of claim 1, wherein the first node buffer is
a first-in-first-out (FIFO) buffer.

3. The method of claim 1, further comprising:
using a persistent-reservation scheme that includes:

returning an indication to the first application software
process that indicates whether the reserving of the
first space was successful;

determining by the first application software process
that the reserving was successtul based on the indi-
cation; and

accepting all RMA requests from the first application
software process provided that an amount of space
occupied in a FIFO buffer does not exceed the
reserved amount for the first space.

US 10,129,329 B2

37

4. The method of claim 1, further comprising:
using a controlled-discard scheme that includes:
immediately following the first allocation command
with a block of RMA requests from the first appli-
cation software process to the first node buffer;
if there is not sufficient space in the node buffer for the
block of RMA requests then discarding all requests
of the block and returning an indication to the first
application software process that the first allocation
command was not successful; and
retrying the first allocation command by the first appli-
cation software process.
5. The method of claim 1, further comprising:
tracking operation requests that are sent on the network
from the first network node to other ones of the
plurality of network nodes.

6. The method of claim 1, wherein the communicating of
data between the second network node and the first network
node based on the first RMA request further includes com-
municating using a plurality of packets.

7. The method of claim 1, further comprising:

entering a first marker request into the first node buffer,

and

sending, based on the first marker request, a notification

to the first application software process once all prior
requests in the first node buffer have been sent.

8. A non-transitory computer-readable medium having
instructions stored thereon for causing a suitably pro-
grammed information processor to perform a deadlock-
avoidance method in a parallel-processor system,

wherein the parallel-processor system includes a plurality

of network nodes,
wherein each one of the plurality of network nodes
includes a node buffer, a processor and local memory,

wherein the plurality of network nodes includes a first
network node having a first node buffer, a second
network node having a second node buffer, and a third
network node having a third node buffer,

wherein each one of the plurality of network nodes is

operatively coupled to a plurality of other network
nodes over a network, and

wherein at least one software process executes on each

one of the plurality of network nodes,
the deadlock-avoidance method comprising:

receiving, in the first network node, a first allocation

command from a first software process executing in the
processor of the first network node to reserve a first
space in the first node buffer for communication
between the first software process executing in the
processor of the first network node and other software
processes executing in processors of other network
nodes;

reserving the first space for use by the first software

process;
entering a first remote memory access (RMA) request
from the first software process into the first node buffer;

performing a first RMA operation by sending the first
RMA request over the network to the second network
node, and communicating data between the second
network node and the first network node based on the
first RMA request;

removing the first RMA request from the first node buffer;

un-reserving the first space in the node buffer of the first

network node;

receiving, in the first network node, a second allocation

command from a second software process executing in
the processor of the first network node, to reserve a
second space in the first node buffer for communication
between the second software process executing in the

10

15

20

25

30

35

40

45

50

55

65

38

processor of the first network node and other software
processes executing in processors of other network
nodes;

reserving the second space for use by the second software
process;

entering a second RMA request from the second software
process into the first node buffer;

performing a second RMA operation by sending the
second RMA request over the network to the third
network node, and communicating data between the
third network node and the first network node based on
the second RMA request;

removing the second RMA request from the first node
buffer; and

un-reserving the second space in the node buffer of the
first network node.

9. The medium of claim 8, wherein the first node buffer

is a first-in-first-out (FIFO) buffer.
10. The medium of claim 8, wherein the medium further
includes instructions such that the method further comprises:
using a persistent-reservation scheme that includes:
returning an indication to the first application software
process that indicates whether the reserving of the
first space was successful;

determining by the first application software process
that the reserving was successtul based on the indi-
cation; and

accepting all RMA requests from the first application
software process provided that an amount of space
occupied in a FIFO buffer does not exceed the
reserved amount for the first space.

11. The medium of claim 8, wherein the medium further
includes instructions such that the method further comprises:

using a controlled-discard scheme that includes:

immediately following the first allocation command with
a block of RMA requests;

if there is not sufficient space in the node buffer for the
block of RMA requests then discarding all requests of
the block and returning an indication to the first appli-
cation software process that the first allocation com-
mand was not successful; and

retrying the first allocation command by the first appli-
cation software process.

12. The medium of claim 8, wherein the medium further

includes instructions such that the method further comprises:

tracking operation requests that are sent on the network

from the first network node to other ones of the
plurality of network nodes.

13. The medium of claim 8, wherein the medium further
includes instructions such that the communicating of data
between the second network node and the first network node
based on the first RMA request further includes using a
plurality of packets.

14. The medium of claim 8, wherein the medium further
includes instructions such that the method further comprises:

entering a first marker request into the first node buffer,
and

sending, based on the first marker request, a notification
to the first application software process once all prior
requests in the first node buffer have been sent.

15. A parallel-processor system comprising:

a plurality of network nodes, wherein each one of the
plurality of network nodes includes a node buffer, a
processor and local memory, wherein the plurality of
network nodes includes a first network node that has a
first node buffer, a second network node that has a
second node buffer, and a third network node that has

US 10,129,329 B2

39

a third node buffer, wherein each one of the plurality of
network nodes is operatively coupled to a plurality of
other network nodes, and wherein at least one software
process executes on each one of the plurality of net-
work nodes,

a reservation unit in the first network node configured to
receive a first allocation command from a first software
process that executes in the processor of the first
network node, to reserve a first space in the first node
buffer for communication between the first software
process and other software processes that execute in
processors of other network nodes, and based on the
first allocation command, to reserve the first space for
use by the first software process;

an RMA unit configured to enter a first remote memory
access (RMA) request from the first software process
into the first node buffer, to send the first RMA request
over the network to the second network node, to
communicate data between the second network node
and the first network node based on the first RMA
request, and to remove the first RMA request from the
first node buffer;

wherein the reservation unit is configured to later un-
reserve the first space in the node buffer of the first
network node;

wherein the reservation unit is also configured to receive
a second allocation command from a second software
process that executes in the processor of the first
network node, to reserve a second space in the first
node buffer for communication between the second
software process of the first network node and other
software processes that execute in processors of other
network nodes, and based on the second allocation
command, to reserve the second space for use by the
second software process;

wherein the RMA unit is also configured to enter a second
RMA request from the second software process into the
first node buffer, to send the second RMA request over
the network to the third network node, to communicate
data between the third network node and the first
network node based on the second RMA request, and to
remove the second RMA request from the first node
buffer;

wherein the reservation unit is configured to later un-
reserve the second space in the node buffer of the first
network node.

16. The system of claim 15, further comprising a marker
unit that enters a first marker request into the first node
buffer, wherein the first marker request sends a notification
to the first software process once all prior requests in the first
node buffer have been sent.

17. The system of claim 15, further comprising a tracker
unit configured to track operation requests that are sent on
the network from the first network node to other ones of the
plurality of network nodes.

18. The system of claim 15, wherein the first node buffer
is a first-in-first-out (FIFO) buffer.

19. The system of claim 15,

wherein the first application software process uses a
persistent-reservation scheme,

wherein the first network node includes a deadlock-
avoidance (DLA) engine that returns an indication to
the first application software process that indicates
whether the reserving of the first space was successful,

wherein the first application software process determines
that the reserving was successful based on the indica-
tion, and

10

15

20

25

30

40

45

50

55

60

65

40

wherein the DLA engine accepts all RMA requests from
the first application software process provided that an
amount of space occupied in a FIFO buffer does not
exceed the reserved amount for the first space.
20. The system of claim 15,
wherein the first application software process uses a
controlled-discard scheme,
wherein the first network node includes a deadlock-
avoidance (DLA) engine,
wherein the first application software immediately fol-
lows the first allocation command with a block of RMA
requests,
wherein the DLA engine allocates space for the entire
block if sufficient space is available, and
wherein if the first allocation command was not success-
ful the DLA engine discards all requests of the block
and returns an indication to the first application soft-
ware process that the first allocation command was not
successful and the first application software process
later retries the allocation command.
21. The method of claim 2, further comprising:
using a persistent-reservation scheme that includes:
returning an indication to the first application software
process that indicates whether the reserving of the
first space was successful;
determining by the first application software process
that the reserving was successtul based on the indi-
cation;
accepting all RMA requests from the first application
software process provided that an amount of space
occupied in the FIFO buffer does not exceed the
reserved amount for the first space; and
using a controlled-discard scheme that includes:
immediately following the first allocation command
with a block of RMA requests from the first appli-
cation software process to the first node buffer;
if there is not sufficient space in the node buffer for the
block of RMA requests then discarding all requests
of the block and returning an indication to the first
application software process that the first allocation
command was not successful; and
retrying the first allocation command by the first appli-
cation software process.
22. The method of claim 1, further comprising:
providing a low-priority controlled discard space-alloca-
tion request that is only successful if a sum of first-in-
first-out (FIFO) space consumed by low-priority con-
trolled discard requests, FIFO space reserved for low-
priority controlled discard requests, and FIFO space
being requested, is less than or equal to a maximum
value for low-priority controlled discard credits;
providing a high-priority controlled discard space-alloca-
tion request that is only successful if a sum of FIFO
space consumed by high-priority controlled discard
requests, FIFO space reserved for high-priority con-
trolled discard requests, and FIFO space being
requested, is less than or equal to a maximum value for
high-priority controlled discard credits; and
providing a persistent reservation space-allocation request
that is only successful if a sum of FIFO space being
requested and all FIFO space already reserved for
persistent reservations is less than or equal to a maxi-
mum value for persistent reservation credits.

#* #* #* #* #*

