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1
SYSTEM AND METHOD FOR IDENTIFYING
ARTHROPODS IN COLOR-DIGITAL IMAGE
INFORMATION

RELATED APPLICATIONS

This is a divisional of U.S. patent application Ser. No.
12/391,259 filed Feb. 23, 2009 and titled “System and method
for detecting and classifying objects in images, such as
insects and other arthropods™ (which issued as U.S. Pat. No.
7,916,951 on Mar. 29, 2011), which is a divisional of U.S.
patent application Ser. No. 10/838,928 filed May 3, 2004 and
titled “Method and system for detecting and classifying
objects in images, such as insects and other arthropods”
(which issued as U.S. Pat. No. 7,496,228 on Feb. 24, 2009),
which claimed benefit under 35 U.S.C. 119(e) to U.S. Provi-
sional Patent Application No. 60/478,636 titled “Devices,
software, methods and systems for electronic object detection
and identification and application to the detection of insects
and other arthropods” filed Jun. 13, 2003 by Val R. Landwehr
and Fernando Agudelo-Silva, each of which is incorporated
herein in its entirety by reference.

FIELD OF THE INVENTION

The present invention relates to the field of automated
machine-vision recognition, and more specifically, to a
method and apparatus for machine-vision object detection
and classification, particularly of insects and other arthro-
pods.

BACKGROUND

Timely, practical and accurate detection and classification
of arthropods is crucial in many instances. There are many
species of arthropods, particularly among the insects and
mites that cause significant damage and loss to plants, wood
and fiber and transmit pathogens among people and other
animals. The efficient, accurate and timely detection of
arthropod pests is a key factor in managing their populations
and limiting the damage and injury they cause. Detection is
necessary to determine: 1) arthropod presence or absence; 2)
their classification to a certain taxonomic category such as
genus or species; 3) their relative or absolute numbers; 4) a
critical period in the arthropod pest’s life cycle that is ame-
nable to control measures; and, 5) significant phases in the
relationship between the arthropod and the organism that it
affects.

Estimates of arthropod pest numbers are necessary to
decide whether control measures are warranted and detection
of the various life stages of a pest suggests when control
techniques will be most effective. Associating pest numbers
and the pest’s life cycle to periods when the host is most
vulnerable to injury is also critical in pest management. In
addition to insect pests there are many beneficial insect, spi-
der and mite predators that need to be sampled as part of a pest
management program. There is also need for a more expedi-
tious technology to classify arthropods in ecological studies.
Thus, the sampling of arthropod populations in various habi-
tats is an integral part of such diverse fields as ecological
studies, crop protection and human health.

SUMMARY OF INVENTION

Several embodiments of machine-implemented, image-
based systems for detecting and classifying insects and other
arthropods are described. Examples of useful and practical
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applications of the systems are described. These examples
show that the present invention provides labor-saving devices
for counting arthropods and provides improved taxonomic
capabilities for pest management specialists, ecologists, sci-
ence educators, agricultural extension and inspection agen-
cies, among others.

In some embodiments, a sticky substrate is provided in
order that arthropods to be classified are captured. In some
embodiments, the sticky substrate has a first area that has a
first background color (for example, white or bright yellow)
and a second area that has a second contrasting background
color (for example, black or dark blue). Such a substrate
having a plurality of different colors is useful for obtaining
images of arthropods having different colors. For example,
small white thrips are difficult to detect on a white back-
ground or even on a yellow background, however on a black
or dark blue background they are much easier to detect. Some
embodiments use various graphical patterns, specific
color(s), pheromones, kairomones, and/or other chemical
attractants to lure the arthropods to the collection surface. In
some other embodiments, arthropods are collected and either
killed or immobilized and then they are placed on a detection
surface which need not be sticky.

A digital camera, flat-bed scanner or other suitable imaging
device is used to capture an image of the substrate along with
any arthropods that may be stuck to it. In some embodiments,
the image is obtained in the field (at the point of collection);
in other embodiments, the sticky collection surface with its
attached arthropods is transported, mailed, or taken to a facil-
ity where the imaging takes place. In some embodiments, an
initial reference image of the substrate background is
obtained, then insects or other arthropods are collected and
another image is obtained, in order to use the difference
between the two images to calibrate colors and/or to more
readily detect the newly captured arthropods as difference
areas between the two images. In some embodiments, a plu-
rality of images of the same substrate is obtained over time,
wherein the incremental differences in the images provide
information as to when each arthropod appeared.

Once the image or images are obtained, each image is
analyzed to detect pixels of interest, to group the detected
pixels into detected objects, and the detected objects are pro-
cessed to extract image information, such as a hue and satu-
ration histogram, the length, width, length-width ratio, perim-
eter measurement, and/or certain patterns or locations of
color information within the detected object, and this image
information is compared to a set of reference image informa-
tion collected from pre-identified arthropods in order to deter-
mine which, if any, of the reference arthropods most closely
matches the object to be identified.

In some embodiments, once the identification or classifi-
cation has been made, this information is entered into a data-
base (a collection of ordered information), that tracks such
information as the date and location of collection, which and
how many of each type of arthropod was collected. In some
embodiments, the database also collects and correlates other
information such as the types of crops or other vegetation in
the area of collection, the types of insecticides used and when,
and other information that could be useful in arthropod man-
agement programs. In some embodiments, from this infor-
mation, reports are generated and communicated to relevant
governmental (e.g., county, state, or federal) or commercial
entities (e.g., growers’ associations, coops, or pest-manage-
ment consultants).

BRIEF DESCRIPTION OF THE DRAWINGS

The patent or application file contains at least one drawing
executed in color. Copies of this patent or patent application
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publication with color drawing(s) will be provided by the
Office upon request and payment of the necessary fee.

FIG. 1 is a flowchart of a method 100 according to some
embodiments of the invention.

FIG. 2A is representation of a data structure 200 used in
some embodiments of the invention. FIG. 2B is representa-
tion of a data structure 250 used in some embodiments of the
invention.

FIG. 3 is a perspective block diagram 300 of a system used
to acquire an image in some embodiments of the invention.

FIG. 4A is a representation of a detected-object-pixels data
structure 400 used in some embodiments of the invention.
FIG. 4B is a representation of a silhouette-pixels data struc-
ture 401 used in some embodiments of the invention. FIG. 4C
is a representation of an outline silhouette-pixels data struc-
ture 402 used in some embodiments of the invention. FIG. 4D
is a representation of an outline silhouette-pixels data struc-
ture 412 used in some embodiments of the invention. FIG. 4E
is a representation of a silhouette-pixels data structure 422
used in some embodiments of the invention. FIG. 4F is a
representation of a silhouette-pixels data structure 432 used
in some embodiments of the invention. FIG. 4G is a repre-
sentation of a reference silhouette-pixels data structure 440
used in some embodiments of the invention.

FIG. 5 is a flowchart of a method 500 according to some
embodiments of the invention.

FIG. 6 is a perspective block diagram 600 of a system used
to acquire, detect, and classify arthropods, in some embodi-
ments of the invention.

FIG. 7 is a list of a method 700 according to some embodi-
ments of the invention.

FIG. 8A is a flowchart of a method 800 according to some
embodiments of the invention. FIG. 8B is a flowchart of a
method 810 according to some embodiments of the invention.
FIG. 8C is a flowchart of a method 804 according to some
embodiments of the invention. FIG. 8D is a flowchart of a
method 805 according to some embodiments of the invention.
FIG. 8E is a flowchart of a method 806 according to some
embodiments of the invention. FIG. 8F is a flowchart of a
method 807 according to some embodiments of the invention.

FIG. 9 is a perspective block diagram of a system 900 used
to acquire an image in some embodiments of the invention.

FIG. 10A is a representation of a calibration surface 915
used in some embodiments of the invention. FIG. 10B is a
graph of an example calibration function 1010 used in some
embodiments of the invention. FIG. 10C is ablock diagram of
acollecting chamber 1020 adapted to or coupled with vacuum
device(s) to sample insects. FIG. 10D is a perspective view of
a sample cleaning system 1030 used in some embodiments.
FIG. 10E is a perspective view of a sample-processing unit
1040 used in some embodiments. FIG. 10F is a perspective
view of a set of scanner lids 1050 used in some embodiments.
FIG. 10G shows a block diagram of an example on-line
arthropod-identification service 1070. FIG. 10H shows an
example reference database structure 1060 for key arthro-
pods. FIG. 101 shows a first portion of an example reference
statistical-feature database structure 1080 for key arthropods.
FIG. 10J shows a second portion of the example reference
statistical-feature database structure 1080. FIG. 10K shows a
first portion of an example reference statistical-feature data-
base definition 1081 for key arthropods. FIG. 10L shows a
second portion of the example reference statistical-feature
database definition 1081. F1G. 10M shows a first portion of an
example reference color-silhouette database definition 1082
for key arthropods. FIG. 10N shows a second portion of the
example reference color-silhouette database definition 1082.
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FIG. 11 is a flowchart of a method 1100 according to some
embodiments of the invention.

FIG. 12 is a flowchart of a method 1200 according to some
embodiments of the invention.

FIG. 13 is a flowchart of a method 1250 according to some
embodiments of the invention.

FIG. 14 is a flowchart of a method 1260 according to some
embodiments of the invention.

FIG. 15 is a flowchart of a method 1500 according to some
embodiments of the invention.

FIG. 16 is a flowchart of a method 1600 according to some
embodiments of the invention.

FIG. 17 is a flowchart of a method 1700 according to some
embodiments of the invention.

FIG. 18 is a flowchart of a method 1800 according to some
embodiments of the invention.

FIG. 19 is a flowchart of a method 1900 according to some
embodiments of the invention.

FIG. 20 is a flowchart of a method 2000 according to some
embodiments of the invention.

FIG. 21 shows a portion of YCbCr space.

FIG. 22 shows 2D hue/color saturation histogram for a
halictid bee.

FIG. 23 shows values of the circular fit/compactness fea-
ture for three classes of geometric shapes.

FIG. 24 shows a flowchart 2400 of the general description
of the operation of the system.

FIG. 25 shows a digital image called ScanDorsalTraining.
bmp used for generating the identifying reference features.

FIG. 26 shows a digital image ScanVentralTraining.bmp
that has the ventral view of the same eleven individuals as
FIG. 25.

FIG. 27A is a test image ScanDorsal Test.bmp of ten insect
individuals. FIG. 27B is a test image ScanVentralTest.bmp of
the same ten insect individuals as FIG. 27A.

FIG. 28A is an image having dorsal views of the same ten
garden insects as FIG. 27A. FIG. 28B is the image after
successful detection and recognition of these insects.

FIG. 29A is an image having ventral views of the same ten
garden insects as FIG. 27B. FIG. 29B is the image after the
successful detection and recognition of these insects.

FIG.30A is a test image of insects in clutter. F1G. 30B is the
output results image with the correct detection and identifi-
cation of the objects.

FIG. 31 is an image that simulates a snapshot from a
previous sampling period.

FIG. 32A is an image of the syrphid fly species with a
striped thorax. FIG. 32B is an image of an asparagus beetle.
FIG. 32C is an image of a second species of syrphid fly with
no stripes on the thorax. FIG. 32D is an image of a halictid
bee. FIG. 32E is an image of a blow fly. FIG. 32F is an image
of'a multicolored Asiatic ladybird beetle.

FIG. 33 is a test image of insects being overlapped by other
insects or clutter.

FIG. 34 is an image after successful detection and classi-
fication in the case of occlusion.

FIG. 35A is the silhouette of the occluded bee. FIG. 35B
shows the silhouette of the halictid bee prototype. FIG. 35C
shows an occluded halictid bee’s silhouette matched best with
a prototype silhouette of a halictid bee.

FIG. 36 is an image showing color coding of best matches
for three cases of occlusion.

FIG. 37A shows silhouette matching results for occlusion
of two asparagus beetles. FIG. 37B shows silhouette match-
ing results for occlusion of two asparagus beetles. FIG. 37C
shows silhouette matching results for occlusion of two lady-
bird beetles. F1G. 37D shows silhouette matching results for
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occlusion of two ladybird beetles. FIG. 37E shows prototype
silhouette and spotprints for a halictid bee. FIG. 37F shows
silhouette matching results for a halictid bee occluded by an
ash seed.

FIG. 38A shows a spurious correlation of the silhouette
matches for the occluded bee. FIG. 38B shows the correct
correlation of the silhouette matches for the occluded bee.
FIG. 38C shows a spurious correlation of the silhouette
matches for the occluded bee.

FIG. 39 shows equipment setup used in some embodiments
for testing.

FIG. 40 shows a detection surface before weevils are “col-
lected” or placed.

FIG. 41 shows an image of seven boll weevils used for
training the classifier.

FIG. 42 shows an image of detection surface after simu-
lated collection of three weevils.

FIG. 43 shows an image of detection surface after “collect-
ing” three additional insects.

FIG. 44 shows an image output following processing.

FIG. 45 shows an image output following processing.

FIG. 46 is a graph of histograms showing distribution of the
reference boll weevils (training weevils), unknown or test
weevils and the cantharid beetle.

In the drawings, like numerals describe substantially simi-
lar components throughout the several views of the process of
being made. Signals and connections may be referred to by
the same reference number, and the meaning will be clear
from the context of the description.

DETAILED DESCRIPTION

In the following detailed description of preferred embodi-
ments, reference is made to the accompanying drawings that
form a part hereof, and in which are shown, by way of illus-
tration, specific embodiments in which the invention may be
practiced. It is to be understood that other embodiments may
be utilized and structural changes may be made without
departing from the scope of the present invention.

Definition: Object “identification” includes the detection
and classification (such as the name or other identification
information, type, species and genus, age, developmental
stage) of an object, such as of an arthropod.

FIG. 1 is a flowchart of a method 100 according to some
embodiments of the invention. Method 100 includes opera-
tion 110 of acquiring an image, operation 120 of detecting an
object in the image, operation 122 of matching color infor-
mation from the object to a database of arthropod color infor-
mation, operation 124 of outlining the silhouette of the object,
operation 126 of mapping the object outline to a standard
orientation, operation 130 of matching the outline geometry
of'the object to reference outlines, operation 140 of matching
the color geometry from the object to references, and opera-
tion 150 of entering the classification and/or count into a
database of detected arthropods optionally with other infor-
mation (e.g., location, date, and time information).

Note that operations 126 and 130, in some embodiments,
map the orientation of the unknown object to a standard
orientation (e.g., rotating and/or translating (sliding side-to-
side and up or down) until the longest dimension and an origin
are aligned to an X-Y coordinate system) and then compare
that outline to each reference outline from a reference library
(i.e., database) of outline geometries of arthropods each of
which is in that standard orientation until a match is found. In
other embodiments, for each reference outline geometry from
the reference library, the reference outline is obtained one at
a time, and the reference outline is rotated and/or translated,
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compared to the outline of the unknown object (which is in
the random orientation in which it was detected), then the
reference outline is rotated/translated more, again compared,
and so on until the best match is found. Thus, either the
unknown can be rotated/translated, and then compared to the
library of reference outlines; or the reference outlines can be
rotated/translated and compared to the outline of unknown.

At block 110, some embodiments of method 100 include
acquiring an image, for example, obtaining a digital image
from a scanner or digital camera that “looks™ at a sticky
substrate, possibly having one or more arthropods that are to
be classified, (i.e., “identified” or “recognized”). At block
120, some embodiments of method 100 include detecting an
object, i.e., distinguishing pixels of the object from a back-
ground, and then grouping or associating neighboring pixels
as a single detected object, or “detection.” At block 122, some
embodiments of method 100 include matching the color his-
togram (e.g., how many pixels, regardless of location within
the image, are of a particular hue and saturation) from the
object to histogram data of a reference arthropod from a
database having extracted information from a plurality of
pre-identified arthropods.

Some embodiments match primarily on the basis of the
matching done at block 122 and other feature matchings, and
omit the matching operations of blocks 126, 130, and/or 140.
At block 124, some embodiments of method 100 include
outlining the detected object, i.e., determining which pixels
form the outer boundary or silhouette of the detection. At
block 126, some embodiments of method 100 include map-
ping (i.e., rotating and translating pixels) the arthropod’s
outline to a standard orientation (e.g., head up and image
centered). At block 130, some embodiments of method 100
include matching the outline geometry (silhouette) from the
object to a particular reference silhouette. At block 140, some
embodiments of method 100 include matching the color
geometry from the object (e.g., whether particular pixels, at a
particular location (e.g., X and Y offsets from an origin loca-
tion) within the image, are of a particular hue and saturation).
At block 150, some embodiments of method 100 include
entering the classification and/or the count of arthropods of a
particular classification into a database of detected arthropods
optionally including the location, date, time, environment, or
other collection data. In other embodiments, the classification
is output to a user.

FIG. 2A is a representation of a data structure 200 (e.g.,
useful in a database, in some embodiments). In some embodi-
ments, data structure 200 includes reference database infor-
mation for key arthropods. Some embodiments include one or
more different reference databases of important arthropods
for classification. In some embodiments, a plurality of simi-
larly structured databases are provided. Each such database is
tailored for particular agricultural crops (e.g., for field use)
and/or commodities (e.g., for use in grain elevators or other
commodity-storage facilities), or other specialized or identi-
fied environments. Each database structure 200 contains a
plurality of records 221, 222, etc., that include a sufficient
representation of the variation in appearance of the important
and common arthropods for a particular crop or environment.
In some embodiments, an entry in the database includes an
identification number 201, color information 232, color
geometry information 236, outline geometry information
241, etc. In some embodiments, the color information 232
includes luminance information 233, hue information 234,
and saturation information 235. In some embodiments, a
plurality of subfields 231 (sometimes called a “spotprint™) are
provided, each having color information 232 (e.g., hue and
saturation) and color-geometry information 236 (e.g., the X
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and 'Y offset for that hue and saturation). Some embodiments
include further identification data 242 (such as a complete
reference image to be provided to the user to assist the user in
visually confirming a classification from the system).

FIG. 2B is a representation of a data structure 250 (e.g.,
useful in a database, in some embodiments). In some embodi-
ments, data structure 250 includes a plurality of entries 261,
262, etc., each with information for each different type or
group of arthropods that have been identified (e.g., entry 261
for the first type of arthropod identified, and entry 262 for the
second type of arthropod identified). In some embodiments,
the entries in the database include taxonomic information
such as genus-species identification information 251, age
and/or developmental stage information 259, location found
information 252, date detected information 253, time
detected information 254, lure information 255, count infor-
mation 265, etc. Some embodiments of data structure 250 are
implemented as a relational database. Some embodiments of
data structure 250 are implemented as a relatively simple
table. Some embodiments of data structure 250 include fur-
ther reference information that can be provided to a user such
as images of each species and/or each development stage so
that the human user can do a visual double check of the results
from the automatic system, or control methods, or other infor-
mation useful to the user and correlated to the identifications
made.

FIG. 3 is a high-level perspective block diagram 300 of a
system used to acquire an image in some embodiments of the
invention. The system includes a surface 89 used to trap
and/or attract arthropods 98. In some embodiments the
arthropods are manually collected, killed or immobilized and
then placed on a detection surface in order to be imaged.
Imager system 310 captures a digital image of the surface 89
and arthropods 98, and transfers the image by cable or wire-
less communications to data-processing system or computer
320 for detection and classification. Some embodiments of
the invention include (see FIG. 3) a computer-readable media
321 (such as a diskette, a CDROM, a DVDROM, and/or a
download connection to the internet) having instructions
stored thereon for causing a suitably programmed data pro-
cessor to execute one or more of the methods described in
FIG. 1 and below, and/or having database records stored
thereon such as described for FIGS. 2A, 2B, 10H, 101, 107,
10K, 10L, 10M, 10N and elsewhere herein.

FIG. 4A is a representation of detected-object-pixels data
structure 400 used in some embodiments of the invention. In
some embodiments, digital image 400 is in gray-scale while
in other embodiments, includes color information. Data
structure 400 represents an example of the digital image
captured by a camera of an arthropod to be classified.

FIG. 4B is arepresentation of a filled-silhouette-pixels data
structure 401 used in some embodiments of the invention.
The captured digital image has been processed to isolate
subject arthropod from the background image, and is repre-
sented in filled-silhouette form 401 (e.g., wherein all the
background pixels are set to a zero value (black) and all the
data pixels are set to a 255 value (white)).

FIG. 4C is a representation of an outline-silhouette-pixels
data structure 402 (or simply called a silhouette data struc-
ture) used in some embodiments of the invention. The digital
image 401 has been further processed to convert it to an
outline silhouette 402 with a center-of-mass of point 410.

FIG. 4D is a representation of a slightly rotated silhouette-
pixels data structure 412 used in some embodiments of the
invention. The digital image 402 has been rotated around the
center-of-mass 401 (i.e., the graphic center of the silhouette)
to produce digital image 412 with a center-of-mass 411.
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FIG. 4E is a representation of a rotated silhouette-pixels
data structure 422 used in some embodiments of the inven-
tion. The digital image 402 has been rotated further around
the center-of-mass 401 to produce digital image 422 with a
center-of-mass 421.

FIG. 4F is a representation of a further-rotated silhouette-
pixels data structure 432 used in some embodiments of the
invention. The digital image 402 has been rotated still further
around the center-of-mass 401 to produce digital image 432
with a center-of-mass 431. The rotation of the image 402
around the center-of-mass 410 continues until the image is in
a standard orientation as shown in image 432.

FIG. 4G is a representation of a reference silhouette-pixels
data structure 440 used in some embodiments of the inven-
tion. Reference data structure 440 consists of the outline
silhouette 442 and the center-of-mass 441. In some embodi-
ments, the unknown image data structure in standard orien-
tation, such as in image 432, is compared against the refer-
ence data structure 440 to determine a best match and to
classify the unknown arthropod. In some other embodiments
the outlines of reference data structures are initially in a
standard orientation but they are rotated and translated to
compare with the outline of the unknown data structure that,
because of the random nature of collection, may not be in a
standard orientation.

FIG. 5 is a high-level flowchart of a method 500 according
to some embodiments of the invention. In some embodi-
ments, method 500 represents a high-level overview of
method 100 of FIG. 1, and of the methods of FIGS. 10-20 and
24. Method 500 includes the process of acquiring the image
510 (input), processing the image to detect and identify the
arthropods 520 (process), and outputting or transmitting data
that identifies and quantifies the detected and identified
arthropods 530 (output).

FIG. 6 is a perspective block diagram 600 of a system used
to acquire, detect, and classify arthropods, in some embodi-
ments of the invention. In some embodiments, system 600
includes an image acquisition system 310 and an image pro-
cessing system 320, as depicted in FIG. 3.

In some embodiments, e.g., particularly for deployment in
the field, trapping-and-image-acquisition system 610
includes a color digital camera 611 having a lens 612 is
connected by cable, fiber, or wireless communications 631
(such as over the internet) to the communications-receiving
hardware (e.g., an input/output subsystem) 630 of the user’s
host computer 320. The camera 611 takes images of arthro-
pods (e.g., 91, 92,93, and 94) on a trapping surface 624 which
is part of the device. In some embodiments, the trapping-and-
image-acquisition system 610 includes a filter 614 over the
lens 612 and one or more illumination devices 613 to enhance
the images of the arthropods of interest. Some embodiments
include a diffuser or similar device (not explicitly shown, but
for example, by having diffuse-type LEDs for lights 613) on
the illumination devices 613, in order to reduce shadows and
make the illumination more even across the entire surface
624. In some embodiments, the trapping and image-acquisi-
tion system 610 can include a pre-processor to do the detec-
tion and classification in the field. In other embodiments, the
system 600 sends the images to the user’s host computer for
detection and classification. In some embodiments, the user
initiates a direct request from the host computer 320 for an
image or to schedule periodic image sampling and uploading.

In some embodiments, system 600 is used for laboratory
and other indoor applications. In some embodiments, image-
acquisition system 620 includes a scanner 621. On the surface
of the scanner, in some embodiments, a box 622 is used to
elevate the sampling substrate or background 624 slightly
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above the scanner surface (e.g., so the sticky paper does not
stick to the glass scanning surface or to filter 623, ifused). A
filter 623 (e.g., color and/or polarization filter) can optionally
by used to enhance the image of the arthropods of interest. In
some embodiments, the user places or attracts sampled
arthropods onto a substrate 624 to be entrapped and/or
scanned, in order to have them detected, counted, and classi-
fied. In some embodiments, substrate 624 is sticky, in order to
entrap the arthropods. In some embodiments, substrate 624 is
colored or patterned with a background that has been empiri-
cally determined to attract the arthropods of interest. In some
embodiments, substrate 624 is colored or patterned with a
plurality of different colors in order to have different contrast-
ing backgrounds that enhance the contrast between the back-
ground and a plurality if different arthropods of interest. In
some embodiments, substrate 624 includes a chemical attrac-
tant to lure the arthropods to its surface. The scanned image of
the background and any arthropods that may be on the sub-
strate is sent/transmitted by cable 632, or wireless communi-
cations, or other suitable means (such as mailing a CDROM
having the image data stored thereon) to the communications
hardware 630 and host computer 320.

In some embodiments, host computer 320 contains soft-
ware to capture or receive images from the camera system 610
and/or the scanner system 620, and process the acquired
images to detect and classify the arthropods. The host com-
puter 320 software processes the images 640 and produces
output identification data 660 and/or updates database
records with arthropod information 650, including, in some
embodiments, entering data into database 651, including
location data 652 (state, county, field, location within field),
date 653, conditions 654, insect identifications, counts, etc.
655.

In some embodiments, the image processing 640 includes
locating the objects in the camera or scanned digital image
641, isolating the objects in the image 642, reorienting the
object in a standard orientation 643, comparing the object to
a reference object or a database of reference objects 644, and
identifying the object by detecting and classifying it. The
results of the image processing 640 optionally resultin output
identification data 660 and/or updates database records with
arthropod information 650. In some embodiments, updating
the database records includes entering the data in a database
651. The data in the database can include location data 652
(e.g., state, county, farm name, field location, GPS location,
etc.), date of sampling or processing 653, conditions of sam-
pling 654, along with the number of detected arthropods and
the arthropod identification and classification information
655. In some embodiments, the right-hand half (data process-
ing portion) of FIG. 6 is equivalent to system 320 of FIG. 3,
and the left-hand half (image obtaining portion) of FIG. 6 is
equivalent to system 310 of FIG. 3.

FIG.7is aflowchart/list of a method 700 according to some
embodiments of the invention. Method 700 includes the pro-
cess of obtaining an image 710, isolating the object image
from the background image using “color” 720 (e.g., lumi-
nance and/or hue and saturation), isolating the objects in the
image 730 (e.g., object A from object B), generating image
attributes 740 of object A, comparing image attributes to
database of reference attributes 750, storing output detection
and identification information for each arthropod 760 (e.g.,
nearest matches and/or confidence levels), entering the
arthropod classifications 770.

FIG. 8A is an overview flowchart of a method 800 accord-
ing to some embodiments of the invention. At blocks 99 and
98 respectively, some embodiments of method 800 include
inputting or obtaining the current image (the one to be ana-
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lyzed), and inputting or obtaining the prior or background
image (the one to be subtracted from the current image). At
block 810 (further described in FIG. 8B and FIG. 8C), some
embodiments of method 800 include enhancing the image
(e.g., by correcting colors based on a subset of the image that
represents a calibration standard). At block 830 (further
described in FIGS. 8C and 8F), some embodiments of method
800 include segmenting of the detected objects (i.e., collect-
ing or associating pixels that appear to be of a single detection
(or detected object)). Blocks 810 and 830 represent the data-
independent or pixel-level processing 801. At block 840 (fur-
ther described below in FIG. 8D and FIG. 8E), some embodi-
ments of method 800 include extracting features (e.g., finding
the color histogram and silhouette, and/or rotating/translating
to a standard orientation). At block 850 (further described
below in FIG. 8D), some embodiments of method 800 include
statistically classifying the objects (e.g., arthropods or other
objects of interest) using their extracted features. At block
860 (see FIG. 8D), some embodiments of method 800 include
syntactically classifying using silhouette and/or color-refer-
ence-pixel matching. At block 870, some embodiments of
method 800 include updating an arthropod database and/or
outputting the classification obtained. Blocks 840, 850, 860
and 870 represent the data-dependent or symbolic-level pro-
cessing 802.

FIG. 8B is a flowchart of a method 810 according to some
embodiments of the invention. At block 811, some embodi-
ments of method 810 include enhancing the image using
noise reduction (e.g., temporal averaging and/or spatial aver-
aging), and/or perspective distortion correction (e.g., map-
ping pixels to a normalized view) and/or color correction
(e.g., adjusting the gamma or contrast to obtain more correct
color renditions). At block 814, some embodiments of
method 810 include block 815 of transforming data from an
RBG format to a YCbCr color space, which includes block
816 of calculating the intensity image (the Y data), block 817
of calculating the hue image (the arctangent of (Cr/Cb) data),
and block 818 of calculating the saturation image (the square
root of (Cr squared plus Cb squared) data).

FIG. 8C is a flowchart of a method 804 of low-level (or
pixel-level) image processing, according to some embodi-
ments of the invention. Low-level processing means that each
function is applied to each pixel. At block 90, some embodi-
ments of method 804 include acquiring the image. The
acquired image can be either a color or black-and-white
(B&W) image. For B&W images, the processing skips func-
tions involving hue and saturation images as well as the
calculation of color features. At block 811, some embodi-
ments of method 804 include optional enhancing of the image
as described in FIG. 8B above. At block 813, some embodi-
ments of method 804 include calculating a background image
from the current image (e.g., determining what color most of
the pixels are in a given area, and using that color as the
background for that area). At block 812, some embodiments
of method 804 include choosing which background image
type to use. At block 814, some embodiments of method 804
include creating intensity, hue, and saturation images for the
current and background images, as described in FIG. 8B
above. At block 819, some embodiments of method 804
include creating difference images (between the current and
background images) for each of the three image types (inten-
sity, hue, and saturation), and producing outputs 820. At
block 821, some embodiments of method 804 include per-
forming an adaptive search for a segmentation threshold for
each of the three image types. At block 822, some embodi-
ments of method 804 include applying thresholds to produce
three types of segmentation images. Block 830 includes
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blocks 831 and 832. At block 831, some embodiments of
method 804 include applying combined segmentation logic
and pixel-level shadow rejection to produce a segmented
image. At block 832, some embodiments of method 804
include labeling regions (using connected components logic)
and/or rejecting small clutter, to produce a labeled image 839.
The labeled image generated by region labeling is also called
connected components. Control then passes to FIG. 8D.

FIG. 8D is a flowchart of a method 805 of high-level (or
object-level) image processing, according to some embodi-
ments of the invention. High-level processing means that
each function is applied to each object or detection. At block
840, some embodiments of method 805 include extracting
features and/or silhouettes. At block 850, some embodiments
of method 805 include performing statistical classification.
At branch block 857, some embodiments of method 805
include going to block 871 if the best match is “good” and by
far the best; else control passes to block 858. At block 871,
some embodiments of method 805 include incrementing the
appropriate species counter and/or updating graphical output.
At branch block 858, some embodiments of method 805
include going to block 872 if the method is not executing the
option of silhouette matching; else control passes to block
860. At block 872, some embodiments of method 805 include
incrementing the classification counter for “other” (for
detected objects that were not matched to any reference item
included in the reference database) and/or updating the
graphical output. At block 860, some embodiments of method
805 include performing silhouette matching to discern
closely ranked species, or possible occlusions, or incomplete
or damaged arthropod bodies. At branch block 867, some
embodiments of method 805 include going to block 873 if the
best silhouette match is “good”; else control passes to block
868. At block 873, some embodiments of method 805 include
incrementing the appropriate species counter and/or updating
graphical output. At block 868, some embodiments of method
805 include rejecting the detected object as clutter or “other”
and going to block 874. At block 874, some embodiments of
method 805 include incrementing the classification counter
for “other” and/or updating the graphical output.

FIG. 8E is a flowchart of a method 806 of an arthropod
classification process used as an alternative or supplement to
that of FIG. 8D according to some embodiments of the inven-
tion. At block 840, some embodiments of method 806 include
extracting statistical features (e.g., size, shape, perimeter
length, intensity, color—e.g., histogram information) and or
extracting silhouette data (e.g., perimeter pixels (the outline),
and/or color-reference pixels). At block 851, some embodi-
ments of method 806 include performing a INN classification
using a feature-reference database 91. At branch block 856, if
the INN decision is “good,” control passes to block 875
where the classification is output; else control passes to block
861. At block 861, some embodiments of method 806 include
silhouette matching using reference data from prototype sil-
houette database 92. At block 876, some embodiments of
method 806 include outputting the resulting classification.

FIG. 8F is a flowchart of a method 807 that performs
segmentation processing according to some embodiments of
the invention. In some embodiments, data 820 is obtained
from block 819 of FIG. 8C. At block 823, some embodiments
of method 807 include pixel labeling using an adaptive
threshold from a histogram search. Block 830 includes blocks
831, 834, and 835. At block 831, some embodiments of
method 807 include applying segmentation logic using a
modified OR of the detected pixels. At block 834, some
embodiments of method 807 include performing morpho-
logical operations, such as filling in holes within detected
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objects or smoothing the edges of detected objects. At block
835 (as in 832 of FIG. 8C), some embodiments of method 807
include performing connected-components logic to obtain a
labeled image.

FIG. 9 is a perspective block diagram of a system 900 used
to acquire an image in some embodiments of the invention.
System 900 includes, in some embodiments, a collection
surface or substrate 910 having a sticky surface over at least
part of its surface area, in order to capture arthropods, and
having a plurality of different backgrounds (e.g., having dif-
ferent colors, hues, shades, and/or patterns) that enhance
image quality and contrast for a variety of different arthro-
pods, help calibrate imager color or contrast, and/or attract or
repel various arthropods. For example, some embodiments
include a white area 911 (useful for good image contrast with
some black or darker arthropods), a yellow area 913 (useful
for attracting certain arthropods), a blue area 912 and/or a
black area 914 (useful for good contrast with some white or
lighter arthropods), and/or an area 919 having a striped, spot-
ted, checkered, wavy or other pattern(s) that has been empiri-
cally determined to attract (in order to capture certain variet-
ies that the user desires to observe) or repel certain varieties of
arthropods (in order to avoid capturing other varieties that the
user desires not to have in her or his images). It may be that a
certain color (e.g., a particular shade of green) is useful to
attract the prey to the trap, but that perhaps a different color is
a better background for obtaining images, and thus, in some
embodiments, both colors are provided on the collection sur-
face or within the trap. Some embodiments also include a
scale 909 that is useful to adjust the size of the image to a
standard metric.

Some embodiments include a calibration patch 915
(which, in some embodiments, is not sticky in order to avoid
having arthropods or debris blocking portions of its image),
wherein patch 915 includes a plurality of different colors,
hues, or shades 916, 917, and/or 918, useful to calibrate the
image obtained for later pre-processing to obtain more accu-
rate color renditions. Some embodiments include side light-
ing 920 (provided, e.g., by one or more LEDs) and/or front
lighting 921 (also provided, e.g., by one or more LEDs) that
are used either together to obtain a well lit image without
shadows, or separately (e.g., alternately) to obtain one or
more images having differing lighting conditions to obtain
images one of which might have better image quality than
others. In other embodiments, available sunlight is used
instead. Some embodiments include one or more diffusers
(not shown) on, or in front of, the LEDs in order to further
reduce shadows. Some embodiments include a colored filter
931 (e.g., a red or pink filter in some embodiments, to reduce
contrast of those colors and/or increase the contrast of
complementary colors) and/or a polarizing filter 932 (e.g., to
reduce glare) (note that the horizontal-line pattern on filter
932 does not necessarily represent the color blue (such as in
patch 912), but rather an exemplary polarization direction).
Some embodiments include an imager 310. Some embodi-
ments include an enclosure 960 (shown in dotted lines) to
hold or support the other components of system 900. Some
embodiments include a substrate or container 970 having a
chemical attractant (such as a pheromone and/or kairomone)
to attract a wide variety of arthropods, or to selectively attract
only certain types, and/or having a chemical repellant to
selectively avoid capturing certain types of arthropods. In
some embodiments, the chemical attractant substrate 970 is
included as a portion (i.e., unified with) background substrate
910. In other embodiments, a separate container is provided
as shown in FIG. 9. In some embodiments, substrate or con-
tainer 970 is made onto and sold as part of substrate 910. In
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other embodiments, substrate or container 970 is separately
sold and then placed on or near substrate 910 in the field. In
some embodiments, substrate 910 is a consumable item that is
purchased separately and periodically replaced. In some
embodiments, substrate 910 and calibration patch 915 are
sold or delivered separately, and then either used separately
within the imaging field-of-view, or stuck together as shown.

Some embodiments include standardized consumable
sticky sheets 910 for trap system 900. These provide sticky
coated sheets for trapping insects. In some embodiments,
cards come in several sizes to accommodate standard phero-
mone traps, customized traps and simple sticky boards. In
some embodiments, the sticky material is impregnated with
various attractants such as pheromones, kairomones, plant or
microbial extracts. In some embodiments, an audio device
980 (e.g., a speaker 981 connected to a source of audio signal
982) is included in trap system 900 with the sticky surface 910
to attract arthropods. In some embodiments, audio source 980
provides sounds that attract certain arthropods. In some
embodiments, side light source 920 and or front light source
921 (e.g., one or more various different colors of LEDs such
asinfrared, red, orange, yellow, green, blue, and/or ultraviolet
colors, in some embodiments) is chosen and illuminated, e.g.,
at night, to attract certain arthropods to the trap, as well as to
provide illumination for taking the image. In some embodi-
ments, sticky sheets 910 meet color requirements that are
attractive to certain species. In some embodiments, sticky
sheets 910 are made to withstand elements of an outdoor
environment (e.g., sheets having sunlight resistance and cold/
heat resistance).

In some embodiments, the methods and apparatus of the
present invention are also used to analyze images of arthro-
pods whose cuticles (external surface) have been tagged with
diagnostic markers (“taggants”) that have affinities for a spe-
cific cuticle component such as hydrocarbons (see, e.g., Berg-
man, D. K., J. W. Dillwith, R. K. Campbell, and R. D. Eiden-
bary, 1990. Cuticular hydrocarbons of the Russian wheat
aphid. Southwestern Entomologist. 15(2): 91-99), waxes and
lipids (see Lockey, K. 1988. Lipids on the insect cuticle:
Origin, composition and function. Comp. Biochem. Physiol.
89B(4): 595-645, 1988). In various embodiments, the mark-
ers are fluorescent materials, other materials (for example,
tissue stains or afterglow phosphors) or radioactive materials.
Chemical or topographical variations of the arthropod cuticle
among species are used to discriminate insect populations.
For example, there are variations in cuticular hydrocarbons
between different Russian wheat-aphid populations (Berg-
man et al. 1990, cited above). An extensive review of litera-
ture on markers to tag insects is provided by Southwood, 1978
(Southwood, T. R. E. 1978. Ecological Methods. Chapman
and Hall. London. 524 p.). Taggants with affinity for specific
cuticle components can be applied to trapped arthropods or
arthropods placed on a detection surface. Digital images are
taken and analyzed for specific spectra from the tagged
cuticle components. One use for this is in forensic entomol-
ogy, i.e., the identification of insects and other arthropods that
infest decomposing remains, in order to aid criminal investi-
gations.

In some embodiments, the method of the present invention
is also used to examine digital pictures of manually-prepared
tissue sections (e.g., slices of arthropods or other organisms,
including, in some embodiments, sections of human or other
mammalian, avian, piscine, reptilian, or other animal or plant
tissues) that have been labeled with monoclonal-antibody or
DNA-specific-sequence taggants using well-known labeling
techniques such as described in the above references. For
example, a tissue sample is obtained and prepared and a
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selective taggant is applied (such as one or more different
tissue stains, and/or monoclonal-antibody or DNA-specific-
sequence taggant), and a digital photograph is taken. In some
embodiments, a microscope is used to obtain a greatly
enlarged image of suitable resolution. The image-analysis
methods described herein are then used to locate and isolate
areas of interest in the image (in some embodiments, a
human-user interface is provided to enhance the identifica-
tion of areas of interest), and the methods of the invention
then utilize, for example, color histograms or color patterns of
each area of interest, in order to identify the type of organism,
or to identify an indication of some pathology such as cancer
or bacterial infection.

As shown in FIG. 9, some embodiments further include an
optional taggant station 986, for example including a surface
988 across which the arthropods would be expected to walk,
and a funnel 987 leading to black surface 914. An arthropod
walking across or passing through taggant station 986 would
pick up taggant on some portion of its body, for example, on
its feet, much like a child walking through mud. In some
embodiments, the taggant is specifically targeted to selec-
tively attach (or selectively not attach) to one type of arthro-
pod (a targeted taggant), while other embodiments use a
taggant that non-selectively attaches to any arthropod passing
through (a non-selective taggant). In some embodiments, the
LEDs 920 near the black surface 914 include LEDs that emit
ultraviolet or “blacklight” such as are available from Nichia
America Corporation. In some embodiments, a tagged arthro-
pod, upon exiting taggant station 986 would end up stuck to
sticky black surface 914, and photographed. For example, in
some embodiments, a first, normal-light, image is obtained
using one set of LEDs 920 or ambient light, and a second,
blacklight, image is obtained of the same scene using UV
emitting ones of the LEDs 920, and showing, for example,
fluorescently re-emitted light from taggant on the tips of the
feet of the arthropod. Analysis of the two images is then done
in a combined fashion, using features obtained of the arthro-
pod from the first image and from the second image, for
example obtaining colors or color patterns from the first
image and other information such as outline information, e.g.,
the positions of the ends of the limbs, from the second image,
and then performing the recognition methods of the present
invention on all of the information.

Thus, in some embodiments, the present invention includes
acquiring two or more images of the same scene (using either
the same or different imagers), and providing different light-
ing (such as different wavelengths (e.g., UV, visible, and/or
infrared), different polarizations or filters, and/or different
source directions) for each of the plurality of images. In some
such embodiments, taggants are used, for example to provide
fluorescence for the UV image, while in other embodiments,
no taggant is used and the two images obtain different color,
fluorescence, or polarization information of the specimens in
their natural state. For example, a first image can be obtained
in normal light of a red-green-blue spectrum (e.g., using red,
green and blue LEDs for illumination, and an RGB imager),
and then a second image of the same scene is obtained using
the same RGB imager, but with only UV LEDs providing
illumination and the imager obtaining light from the fluoresc-
ing specimen or the taggants attached thereto. In some
embodiments, further images are also obtained, e.g., using
different polarizing filters. Since the same imager in the same
position is used, corresponding pixel locations from the dif-
ferent images provide different information about the same
area of each specimen. The additional images are, in some
embodiments, treated as additional color values, such that a
first hue-saturation-intensity set of values for each pixel is
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obtained from the RGB visible-light image, and a second
hue-saturation-intensity set of values for each pixel is
obtained from an UV-light/fluorescing or phosphor-afterglow
image. In some embodiments, histograms or color patterns of
these additional colors provide additional inputs to the iden-
tification portions of the object-recognition portions of the
method and apparatus for the invention described herein.

In some embodiments, the targeted taggant 989 is sprayed
on from an aerosol can, and when on surface 988, will selec-
tively either stick or not stick to a particular set of arthropod
types. At the targeted taggant station 988, for example, only a
small set of species, or even one specific species or one sex of
arthropod would pick up some of the targeted taggant. Tar-
geted taggants include chemical markers, taggants, radio-
isotopes, afterglow phosphors, and substances with photo/
thermal-chemical effects such as fluorescence, to which are
attached antibodies or DNA snippets or other chemical keys
specific to the set of species, or one specific species or one sex
of arthropod of interest. For example, arthropods have
cuticles that have wax coatings. Different arthropods have
different waxes. Antibodies exist that stick to certain of these
waxes and not to others. The term “taggant™ is used to label
the technology associated with the chemical tagging of
marks, inks or toners or similar substances such that “tagged”
objects can be distinguished from “untagged” objects. In
some embodiments, the taggant effect may be readily observ-
able such as the application of materials that change colors
with slight temperature changes or when viewed at varying
angles or when illuminated by “black light” or flashed with a
short pulse of bright light. Taggants can involve a number of
photo-chemical effects such as; absorbing energy at one
wavelength and emitting energy at another, absorbing energy
at particular wave-lengths, temporal effects when illuminated
with pulsed energy, etc. Taggants can also include radio-
isotopes that can be detected with detectors for radioactivity
such as Geiger counters.

For example, in some embodiments, a species-specific
fluorescent taggant 989 is placed on surface 988 of taggant
station 986. When an individual of that specific species walks
across surface, it picks up some of the taggant 989 on its feet,
travels through optional funnel 987 and becomes ensnared on
sticky black surface 914. Ultraviolet LEDS 920 emit UV light
that is absorbed by the taggant and re-emitted at a longer
wavelength (such as yellow or green) that is readily detected
by imager 310. Individuals of other species would not pick up
the taggant (for example, because their different waxes do not
have an affinity for the taggant), and if these untagged indi-
viduals end up on black surface 914, they would not fluoresce.
This difference provides another distinguishing feature thatis
used by the software to distinguish and identify individuals
from a specified set of arthropods (such as one species).

In some embodiments, the taggant station 986 is sold as a
consumable. These preconfigured taggant stations 986 can
then be sold to users for more specific identification uses.

In some embodiments, a preconditioned sheet 910 includes
the taggant station 988 as one part of the sheet, such that, for
example, the taggant surface 988 is surrounded by black
surface 914. These preconfigured taggant sheets 910 can then
be sold to users for more specific identification uses.

Insome embodiments, trap system 900 also includes one or
more color filters 932 and/or polarizing filters 931 to condi-
tion the light for obtaining higher-quality or better-contrast
images, and a lens system 940 and imaging electronics (such
as a CCD or CMOS detector array and the driving circuitry)
is suitable resolution to obtain images with sufficient quality
for the automatic image processing of the present invention.
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FIG. 10A is a representation of a calibration surface 915
used in some embodiments of the invention. In some embodi-
ments, calibration surface 915 is included as a small portion
of'an overall collection and imaging surface 900 as shown in
FIG. 9. Some embodiments include a grid of squares, each
having a different color, hue, saturation, and/or intensities
916, 917, 918. Since the predetermined colors are of known
values, an image of patch 915 can be used to calibrate the
colors, hues, saturations, and/or intensities of an associated
collection image of arthropods. Some embodiments include a
printed card containing a standard or particular combination
of hue and saturation for each of the following colors: red,
blue and green, or yellow, magenta, and cyan. An image of
this card (as part of a field image of collected arthropods) is
used and compared to a standard to adjust the color settings on
various imaging devices such as scanners, digital video cam-
eras and digital still-frame cameras, so that different imaging
devices and different lighting conditions can be calibrated to
produce arthropod images equivalent in color.

FIG. 10B is a graph of an example calibration function
1010 used in some embodiments of the invention. For
example, for certain imaging hardware under certain lighting
conditions, a curve 1011 is derived from image information
correlated to patch 915. The correction function is then
derived to change the pixel information for the entire image to
a standard (e.g., linear) curve 1012. In addition to the being
able to reproduce identical pigmentation from card to card,
the card is, in some embodiments, printed on paper, plastic or
other material, where the pigments are uniformly applied,
with reflective glare minimized, and the texture of the mate-
rial’s surface minimized relative to the spatial resolution of
the cameras. In some cases, depending on the resolution or
magnification of the imaging devices, the paper for the cali-
bration card is of a quality that does not have detectable
strands or chips of wood fibers. In some embodiments, the
calibration card is not limited to just the visible portion of the
light spectrum. In some embodiments, system 1070 (See FIG.
10H described below) uses imaging devices 310 (and calibra-
tion cards 915) that obtain and/or calibrate image information
using light beyond the visible spectrum to look for distinct
color patterns of arthropods in the near ultraviolet or near
infrared, or for tagged or fluorescent molecular markers on
the arthropod’s surfaces. In some embodiments, LEDs 920
and/or 921 (see FIG. 9) emit light that is at least partially in the
ultraviolet or infrared spectra.

FIG. 10C shows a collecting device 1020 adapted to
vacuum devices to sample insects. In some embodiments,
device 1020 includes an inlet opening 1021 through which air
is drawn and large enough to admit arthropods of interest and
optionally small enough to keep out larger animals such as
bees or hummingbirds, a chamber 1029, a perforated sub-
strate 910 on an inner surface through which air is drawn into
manifold 1022 and vacuum passage 1023 connected to
vacuum pump or fan 1024. In some embodiments, perforated
substrate 910 has holes 1025 and a sticky surface to hold the
collected arthropods, while in other embodiments, the
vacuum alone is enough to hold the collected arthropods long
enough to obtain the desired image using imaging device 310.

FIG. 10D is a perspective view of a sample-cleaning sys-
tem 1030 used in some embodiments. Some embodiments
include sets of sieves (e.g., tilted sieve 1031 with large open-
ings, tilted sieve 1033 with medium openings, and tilted sieve
1035 with fine openings) and/or blower(s) 1037 to separate
arthropods from non-arthropod material, and/or to separate
different types of arthropods from one another. In some
embodiments, the source material is deposited into the open
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top. The size- and/or weight-sorted arthropods and other
objects are then obtained from spigots 1032, 1034, 1036 and
1038.

FIG. 10E is a perspective view of a sample-processing unit
1040 used in some embodiments. In some embodiments,
sample processing unit 1040 includes a vessel or container
1042 (with a closable opening 1041) in which to place
samples of arthropods prior to acquiring their image. In some
embodiments, container 1042 includes a means of immobi-
lizing or killing the arthropods. Immobilizing methods
include using ether or ethyl acetate, or cold temperature. In
some embodiments, container 1042 also contains a plaster-
of-Paris (hemi-hydrated calcium sulfate) substrate 1043 to
hold or absorb any volatile liquids that are used to kill or
immobilize the arthropods. There are several variations (dif-
ferent embodiments) for immobilizing the arthropods. In
some embodiments, container 1042 has a separate compart-
ment for solids that would prevent arthropod mobility. In
some embodiments, ammonium carbonate, ice, and/or dry
ice, are placed in this compartment to kill, render immobile,
or knock out arthropods. In some embodiments, container
1042 could also be fitted with one or more regulator valves
1044 that can be screwed onto a CO, cartridge 1045. A con-
trolled quantity of CO, is released into the container to render
immobile or knock out the arthropods.

FIG. 10F is a perspective view of a set of scanner lids 1050
used in some embodiments. In some embodiments, set 1050
includes scanner lids in various standard colors (e.g., 1id 1051
with a black background, lid 1051 with a blue background,
and lid 1053 with a yellow background, and/or a lid with a
white background) are provided to cover the scanner surface,
if such is used to obtain images of the arthropods. For
example, a sample of arthropods are deposited on the glass
scanner surface and covered with one or another of the set of
lids 1050 to obtain one or more images with different back-
grounds to improve contrast. In some embodiments, set of
lids 1050 are constructed out of a paper product or plastic with
amatte surface to reflect light without a specular (mirror-like)
reflection. Some embodiments include several optimized col-
ors to allow for the selection of a background color that
maximizes the difference in hue and saturation between the
expected insects and their background. Studies with scanners
indicate that, in some embodiments, a lid about five centime-
ters high may be the optimum height.

FIG. 10G is a block diagram of an example on-line arthro-
pod-identification service 1070. In some embodiments, one
or more users 87 upload (transmit) one or more images 1071
of unknown arthropods or other objects to a commercial
and/or non-profit website hosted by system 320 (see FIG. 3).
In some embodiments, the images are optionally accompa-
nied by other information such as the place, environment and
time of the collection, and optionally including billing infor-
mation such as credit-card data (to pay for the identification
service) that is entered through a secure interface and stored
to database 1079. In system 320, automated software ana-
lyzes and classifies the objects found, and returns an identi-
fication, and optionally also sends other relevant information
(such as control methods and substances, and/or image infor-
mation to help the user confirm the machine-made classifica-
tion) on the identified species. In other embodiments, images
of unknowns are sent to the automated identification service
provided by system 320 via mail, email or facsimile machine
(fax). In some embodiments, the source image needs to con-
formto certain image formats, standardized lighting and cam-
era settings, pixel resolutions, etc. In some embodiments, the
image is pre-processed to obtain condensed image informa-
tion, such as histogram and silhouette information, which is
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transmitted and analyzed by proprietary software (using ref-
erence database 200 or 1060) at a centralized location, which
returns the identification and/or other information. In some
embodiments, the system 320 stores the identifications made
and the information such as place, environment and time of
the collection, into a centralized results-and-analysis data-
base 250, where various further analysis and data-aggrega-
tion functions can be performed.

In some embodiments, the following method is used with
FIG. 10G: establishing a network connection, transmitting
image information wherein the image information includes
image information data regarding one or more arthropods,
analyzing the image information and generating classifica-
tion information regarding identified arthropods, and return-
ing the classification information. In other embodiments,
images of other organisms or their parts (e.g., plants, fish,
feathers from birds, shed skins of snakes, X-rays of human
patients or other pathology or microscopy images, etc.), or of
non-living items (e.g., rocks, crystals, fossils, antiques, or
human-made items) other than arthropods are transmitted,
analyzed, and the identification or classification returned. In
some embodiments, payment information is solicited from
the user 87, and collected into database 1079, in order to
charge the user for the service(s) provided. In some embodi-
ments, different payment amounts are requested based on
how much classification and analysis information is
requested (e.g., just an automated classification might have a
low cost, or additionally a human confirmation of the identi-
fication at a higher cost, and/or information as to control
methods, or image data returned might have different cost
rates).

FIG. 10H shows a diagram of an example reference data-
base structure 1060 for key arthropods. Some embodiments
include one or more different reference databases of impor-
tant arthropods for classification. In some embodiments, each
database is tailored for particular agricultural crops (e.g., for
field use) and/or commodities (e.g., for use in grain elevators
or other commodity-storage facilities), or other specialized or
identified environments. In some embodiments, each record
1061 includes a plurality of fields, for example species filed
1062, genus field 1063, silhouette data field 1064, hue and
saturation data field 1065, etc. In some embodiments, each
record 1061 further includes a data field 1068 describing
methods that can be used to control that particular arthropod,
and data field 1069 having image data for that particular
arthropod, for example in GIF or JPEG format, or a pointer
(such as a URL) to a GIF or JPEG image.

In some embodiments, as shown in the lower portion of
FIG. 10H, each database 1060 contains a plurality of records
1091, 1092, etc., that include a sufficient representation of the
variation in appearance (e.g., record 1091 that includes a
plurality of silhouette fields 1095, hue-saturation histogram
fields 1096, and other identification fields 1097 for the arthro-
pod type identified in species field 1093 and genus field 1094)
of'the important and common arthropods for a particular crop
or environment. In some embodiments, each database 1060
includes information 1098 as to control methods and com-
pounds (e.g., insecticides) for the identified arthropods, and/
or a set of arthropod images 1099 that provide interested
parties with images of arthropods from the image database. In
some embodiments, rather than holding the images and other
auxiliary information directly, database 1060 includes point-
ers to internet web pages having the desired information. This
helps the user by correlating the identification made by the
system 320 to images, control methods, or other information
about particular arthropods. Images are useful for researchers
and educators. Some embodiments provide access to this
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database information, or to certain parts thereof, as part of a
business method implemented to be available (optionally for
a fee) over the internet.

FIG. 101 and FIG. 10J show first and second portions of a
diagram of an example reference database structure record
1080 showing exemplary data, typical of some embodiments,
for one key arthropod, a particular weevil. The comments
following the double slash marks “//” in each field are typi-
cally not included in each record but are shown here for
clarity. In some embodiments, each record 1080 includes data
such as, in FIG. 101I:

FIELD 01—CLASS STRING (e.g., “WEEVIL”);

FIELD 02—SUBCLASS STRING (e.g., “WEEVIL SIDE
VIEW™),

FIELD 03—CLASS NUMBER (e.g., “17);

FIELD 04—SUBCLASS NUMBER (e.g., “17);

FIELD 05—AREA OF ARTHROPOD (e.g., “1292”);
FIELD 06—PERIMETER (e.g., “202”);

FIELD 07—LENGTH (e.g., “57.9227);

FIELD 08—WIDTH (e.g., “34.4617),

FIELD 09—CIRCULAR MATCH FEATURE (e.g.,
“0.398");

FIELD 10—RECTANGULAR MATCH FEATURE (e.g.,
“0.6477);

FIELD 11—ELONGATION (MAJOR TO MINOR AXIS)
(e.g., “1.681™;

FIELD 12—TWELVE VALUES OF THE SHAPE HISTO-
GRAM (e.g., twelve bins);

FIELD 13—AVERAGE GRAY LEVEL (e.g., “-66");
FIELD 14—SIXTY-FOUR VALUES OF THE INTENSITY
HISTOGRAM,; and in FIG. 10J:

FIELD 15—32 by 32 COLOR-SATURATION MATRIX
(e.g., typically mostly zeros with groups of peaks correspond-
ing to the hues and saturations of the main colors); and
FIELD 16—COLLECTION ID (e.g., character string such as
“08032 CBW 00007).

FIG. 10K and FIG. 10L show first and second portions of a
diagram of an example reference statistical-feature database
definition 1081 for key arthropods. Each field in the database
definition 1081 corresponds to the same field in database
structure 1080, and provides a further explanation of those
fields. In some embodiments, database structure 1080 is used
in the process explained in FIG. 8 A above, and in particular in
statistical classifier 850 and syntactic classifier/silhouette
matcher 860, and/or in the “match outline geometry” block
130 of FIG. 1.

FIG. 10M and FIG. 10N show first and second portions of
an example definition of reference color-silhouette database
1082 for key arthropods. In some embodiments, database
1082 is used in the “match color geometry” block 140 of FIG.
1.

FIG. 11 is a flowchart of a method 1100 according to some
embodiments of the invention. At block 99, the image is
taken, acquired, or input to the classification computer. In
some embodiments, block 1200 includes the operation of
detecting arthropods using color and/or luminescence 1240,
the operation of calculating one or more adaptive thresholds
1250, and combined segmentation logic for detection 1260,
each of which is described further in regard to FIG. 12 below.
Block 1500 includes the operation of creating a 2D histo-
gram, which is described further in regard to FIG. 15 below.
Block 1600 includes the operation of comparing the 2D his-
togram, which is described further in regard to FIG. 16 below.

Block 1700, which is described further in regard to FIG. 17
below, includes the arthropod-classification operations of
applying a modified KNN 1800, which is described further in
regard to FIG. 18 below, evaluating the KNN result 1900,
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which is described further in regard to FIG. 19 below, and
applying a syntactic classifier 2000, which is described fur-
ther in regard to FIG. 20 below. Block 1199 represents the
operation of outputting one or more candidates, and option-
ally also outputting a confidence for each candidate.

FIG. 12 is a flowchart of a method 1200 according to some
embodiments of the invention. In some embodiments,
method 1200 includes the function of inputting 1210 the
image of interest (the one to be analyzed) as well as an earlier
image of the same substrate of a representation of the back-
ground image (e.g., a yellow image if the original substrate
were yellow). The next function of creating 1220 intensity,
hue, and saturation images based on the image of interest and
the earlier or background image, as well as on formulae 1230

wherein, in some embodiments for each pixel in each image,
INTENSITY=0.299xRED+0.587x GREEN+0.114x

BLUE formula 1231

CR=0.701xRED+0.58 7xGREEN+0.114xBLUE formula 1232

CB=-0.299xRED+0.58 7x GREEN+0.886xBLUE formula 1233
SATURATION=SQUARE ROOT(CR SQUARED+

CB SQUARED) formula 1234

HUE=ARCTAN(CR/CB). formula 1235

Next, the function of creating 1240 difference images from
the three sets (intensity, hue, and saturation) of current and
background images is performed. Next, the function of cre-
ating and applying 1250 (one such embodiment is further
described in FIG. 13 below) adaptive thresholds (i.e., func-
tion 1251 of applying adaptive threshold to the intensity dif-
ference image, function 1252 of applying adaptive threshold
to the saturation difference image, function 1253 of applying
adaptive threshold to the hue difference image). Next, the
function of applying 1260 (one such embodiment is further
described in FIG. 14 below) combined-segmentation logic is
performed. Then, the function of applying 1270 connected-
components analysis is performed to create a labeled-detec-
tion image (i.e., for each pixel, examining neighboring pixels
in each of a plurality of directions to determine which pixels
are “connected” (i.e., form part of the same detected object—
called a “detection”—in the image). In some embodiments,
the background pixels are set to a value (e.g., zero) and the
other pixels (e.g., possible arthropods) are set to another value
(e.g., 255). Then the first “255” pixel (e.g., the left-most and
top-most) is processed (e.g., its value is set to one, and its
neighbor pixels and their neighbors, if 255, are also set to one.
Then the next “255” pixel (e.g., the left-most and top-most of
the remaining pixels) is processed (e.g., its value is set to two,
and its neighbor pixels and their neighbors, if 255, are also set
to two. Then the next “255” pixel (e.g., the left-most and
top-most of the remaining pixels) is processed (e.g., its value
is set to three, and its neighbor pixels and their neighbors, if
255, are also set to three, and so on. In some embodiments,
each pixel of the labeled-detection image can be represented
by a 16-bit word. In this way, up to 65,535 groups of pixels
can be identified as “detections” or separate detected objects.
In other embodiments, other values can be used, depending
on the number of objects to be identified.

FIG. 13 is a flowchart of a method 1250 according to some
embodiments of the invention. At block 1310, the function of
method 1250 is started for each of the intensity, hue, and
saturation images. At block 1320, the function of creating a
histogram with the absolute value of the difference between
the entire image (or substantially the entire image) of interest
and the corresponding prior or background image is per-
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formed. For example, the histogram might have 256 “bins™;
one bin (counter value) for each possible absolute value of the
difference value between corresponding pixel values of the
two images. Bin 0 is a counter that would have the number of
pixels that have zero difference (a count of the pixels that have
the same value in the prior image and the image of interest);
bin 1 would have the number of pixels with a difference of
plus or minus 1, bin 2 would count the pixels that have a
difference of plus or minus 2, and so on. At block 1322, the
function of setting the threshold to a default value, and select-
ing as a threshold bin if 15% of the pixels have a larger
difference (e.g., taking as an initial assumption that 15% or
fewer pixels will be of an arthropod or other object), is per-
formed. At block 1324, the function of finding the bin with the
peak value within the first 30 bins (the bins that count the zero
difference to the twenty-nine difference) is performed. At
block 1326, the function of calculating the positive standard
deviation about the peak bin (e.g., for a standard deviation of
one and four, to determine a search range) is performed. At
block 1328, the function of calculating the minimum bin size
to continue the search (e.g., in some embodiments, a mini-
mum bin size or value would include at least 0.15% of the
total pixels) is performed. At block 1330, a branch is made
based on whether there is a bin of the minimum size between
the peak and 4 standard deviation to its right (bins with larger
differences). If yes, then at block 1332 the value in this
“empty” bin is used to set the search threshold, and at block
1334, if the search threshold is greater than the default thresh-
old, then the default threshold is used; else the search thresh-
old is used. If at branch 1330, there is no bin of minimum size
between the peak and % standard deviation to its right, then
block 1340 is performed, where the search region is set to
between a bin at % standard deviation and a bin at some
maximum standard deviation (e.g., a value between two and
four standard deviations) to the right of peak. The threshold is
set when the function encounters two consecutively larger-
valued bins, or a minimum-sized bin. If at branch 1350, the
threshold was found before the maximum-standard deviation
bin, then the search threshold is set at that bin, and the process
goes to block 1334. If at branch 1350, the threshold was not
found before the maximum-standard-deviation bin, then the
search threshold is set at the maximum-standard-deviation
bin, and the process goes to block 1334. This process then
iterates until an appropriate threshold is found (e.g., because
sufficient convergence is seen), for each of intensity, hue, and
saturation difference images.

FIG. 14 is a flowchart of a method 1260 according to some
embodiments of the invention. In some embodiments,
method 1260 is used for the intensity difference image with
entry at block 1410, for the saturation difference image with
entry at block 1412, and for the hue difference image with
entry at block 1414. Block 1420 represents a common launch
point for each image pixel of each type. If, at branch block
1430, the pixel is determined to be a “bright” pixel (wherein
the intensity >threshold value), then at block 1432 that pixel
is marked as a potential arthropod pixel (or as “not back-
ground” if other than arthropods are being examined). Else, if
at block 1430, the pixel is not “bright” then if at branch block
1440, the pixel is determined to be “too dark for shadow”
pixel (wherein the intensity <-threshold value and <-40),
then at block 1432 that pixel is marked as a potential arthro-
pod pixel. Else, if at block 1440, the pixel is not “too dark for
shadow” then if at branch block 1450, the pixel is determined
to be “dark as shadow, but not” pixel (wherein there is a
change in hue or saturation), then at block 1432 that pixel is
marked as a potential arthropod pixel. Else, if at block 1450,
the pixel is not “dark as shadow, but not” then if at branch
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block 1460, the pixel is determined to have “a change in hue
and more than minimum saturation” (wherein the hue
>threshold value or hue <—threshold), then at block 1432 that
pixel is marked as a potential arthropod pixel. Else, if at block
1460, the pixel is not “change in hue and more than minimum
saturation” then if at branch block 1470, the pixel is deter-
mined to have a “change in saturation” (wherein the satura-
tion >threshold value or saturation <-threshold), then at
block 1432 that pixel is marked as a potential arthropod pixel.
Else at block 1472 the pixel is marked as a “background”
pixel.

FIG. 15 is aflowchart of a method 1500 for creationofa 2D
color hue-versus-saturation histogram for arthropod or other
object classification, according to some embodiments of the
invention. In some embodiments, method 1500 starts at block
1510 with input of the original image (or the original as
color-corrected by a method using FIG. 10A and FIG. 10B)
and a labeled-detection image. At block 1520, for each
detected object (“detection”) in the labeled-detection image,
the method passes control to block 1530; where for each pixel
of'the detected object the method goes to block 1532. Atblock
1532, some embodiments of the method include calculating
the pixel’s CR and CB value from its RGB values in the
corresponding original image pixel using the formulae of
block 1534: CR=0.701R-0.587G+0.114B, and CB=-
0.299R-0.587G+0.886B. At block 1536, depending on color
resolution desired, the method optionally includes scaling the
CR/CB values. In some embodiments, the default is to reduce
the values from an 8-bit value down to a 5-bit value by
dividing by 8 (or shifting the value right by three bits to
delete/ignore those three low-order bits). The result is then a
32x32 rather than a 256x256 histogram. At block 1538, some
embodiments of the method include incrementing by one the
histogram’s bin whose row and column correspond to the
pixel’s CR and CB values. If at branch block 1540, there are
more pixels in the detection to process, then control returns to
block 1530 for the next pixel in this detection. Else, if at
branch block 1540, there are no more pixels in this detection
to process, then some embodiments of the method include
dividing each bin of the histogram by the detection’s area (by
the number of pixels in this object). Each value will then be
the fraction of the detection that has that bin’s combination of
hue and saturation. Then, if at branch block 1560, there are
more detections (detected objects) in the image to process,
then control returns to block 1520 for the next detection in this
image. Else, at block 1570, the histograms are complete, and
anidentification process (such as described in FIGS. 16-20) is
started.

FIG. 16 is a flowchart of amethod 1600 for comparing a 2D
color hue/saturation histogram for an unknown with the his-
togram of a reference, according to some embodiments of the
invention. In some embodiments, method 1600 starts at block
1610 with input of a reference-specimen file containing fea-
tures and color histogram for each reference specimen (i.e.,
from a database of previously analyzed and identified arthro-
pod specimens). In some embodiments, at block 1620, the
method reads histograms of the “knowns” (known speci-
mens) from the reference-specimen file. In some embodi-
ments, at block 1630, a color histogram of the unknown
detection is generated (or, in some embodiments, is obtained
as an output of method 1500 of FIG. 15). At block 1640, one
of the reference histograms is selected for comparison. At
block 1650, some embodiments of the method include ini-
tializing an overall difference in an overlap variable to zero.
At block 1660, the method for each corresponding bin of
histograms, goes to block 1662. At block 1662, some embodi-
ments of the method include calculating the absolute differ-
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ence between the two bins. At block 1664, some embodi-
ments of the method include adding the bin difference to the
overall difference in overlap. If, at block 1664, this is not the
last bin, then the method goes to block 1660 to process the
next bin; else at block 1670, some embodiments of the
method include dividing the overall difference by 2.0 to get a
decimal fraction of non-overlap. At ending block 1680, the
results in the normalized feature difference are nextto be used
by a KNN (K-nearest-neighbor) classifier, such as described
in FIG. 17, in some embodiments.

FIG. 17 is a flowchart of a method 1700 having a K-near-
est-neighbor classifier (statistical-feature classifier) approach
to arthropod classification, according to some embodiments
of the invention. Block 1710 represents the input of one or
more reference feature sets, including, in some embodiments,
a sample mean and standard deviation for each feature of each
species, and block 1712 represents the input of the unknown’s
feature set, these inputs going to the starting point of block
1720. At block 1730, some embodiments of the method
include evaluating whether a classification decision of KNN
classifier produced a good match. If, at block 1732, this is a
good match, then at block 1734, this classification is output or
stored in a database of generated identifications or classifica-
tions. Else, from branch block 1736 if the method is not to do
silhouette/color sample matching, then at block 1738, an
output or database entry of “other” classification is indicated,
i.e., the unknown is indicated as not represented in reference
set. Else, at block 1740, a determination is made of whether
the silhouette and color-reference pixel(s) match (e.g., in
some embodiments, as in FIG. 20 described below), in order
to confirm or reject the best match of the KNN classifier. At
branch block 1750, if the silhouette/color match does confirm
the best statistical match, then at block 1755, some embodi-
ments of the method include outputting identification or class
of the KNN classifier (or storing it into a database); else the
match is not confirmed, and at block 1760, some embodi-
ments of the method include finding the best matches for each
prototype silhouette. Then, at block 1770, some embodiments
of'the method include assigning the class of the best silhouette
match to each portion of the unknown not previously
explained by a prototype silhouette. This will explain occlu-
sions. If the best match for an area has an insufficient number
of' matching pixels, then that area belongs to the class “other.”

FIG. 18 is a flowchart of a method 1800 providing a modi-
fied KNN classifier for arthropod identification, according to
some embodiments of the invention. In some embodiments,
method 1800 starts at block 1810 for each known of one or
more reference feature sets. At block 1820, some embodi-
ments of the method include setting a sum-of-squares vari-
ableto zero and goes to block 1822. From block 1822 for each
selected feature, the method goes to block 1830. At block
1830, some embodiments of the method include taking a
difference between the feature of the known and the feature of
the unknown. At block 1832, some embodiments of the
method include normalizing the difference by dividing the
difference by the known’s feature value and then squaring the
quotient. At block 1840, some embodiments of the method
include adding the resultto a sum-of-squares variable. If from
block 1842 there are more features, the method returns to
block 1822; else the method goes to block 1850. At block
1850, some embodiments of the method include assigning a
Euclidean distance for this feature as the square root of the
sum of squares. At block 1860, if this Euclidean distance is
among the K nearest distances, then some embodiments of
the method include performing an insertion sort of this
Euclidean distance into the list of the nearest Euclidean dis-
tances. If at branch block 1862, there are more knowns, then
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the method returns to block 1810; else at block 1870, some
embodiments of the method include assigning the classifica-
tion of the majority vote among the K nearest knowns to the
unknown. At block 1880, some embodiments of the method
include evaluating whether the nearest match of this class is a
good match as describe below for FIG. 19, (and/or assigns a
confidence factor to the match).

FIG. 19 is a flowchart of a method 1900 that provides an
evaluation of whether KNN classifier found a good match,
according to some embodiments of the invention. At block
1910, some embodiments of the method include getting the
feature data for the unknown and the known nearest neighbor
(KNN) of the classification. At branch block 1912, if the
method is to use statistical methods, control goes to block
1920; else control goes to block 1930. From block 1920, for
each feature, the method goes to block 1922. At block 1922,
some embodiments of the method include performing a
Grubbs’ test for a statistical outlier (Grubbs’ test calculates a
ratio called Z, where Z is equal to the difference between the
unknown’s feature value and the mean value of the reference
specimens of the class that best matches the unknown,
divided by the standard deviation among the reference speci-
mens of the best matching class. The mean and standard
deviation also include the unknown. If Z exceeds a critical
value for a given confidence level, the decision of the INN
classifier can be rejected.). At branch block 1924, if the fea-
ture value is an outlier, then control passes to block 1940; else
control passes to branch block 1926, where if more features
are to be examined, control returns to block 1920. Else, if
there are no more features, control passes to block 1950 and
some embodiments of the method include measuring overall
“goodness of fit” with a chi-squared test or other additional
multivariate outlier test such as the Mahlanobis distance-
squared test. Then, at branch block 1952, if the fit is good,
control passes to block 1980 and some embodiments of the
method include outputting the classification; but if the fit is
poor, then control passes to block 1970. At branch block 1970
(and at branch block 1940), if the identification needs to be
confirmed, then control passes to block 1942, and some
embodiments ofthe method include passing the classification
to the silhouette/color-matching classifier of FIG. 20; else the
method passes control to block 1944 and some embodiments
of the method include outputting a classification of “other.”

If, from block 1912, it is decided not to use statistical
methods, control passes to block 1930. At block 1930, for
each feature, some embodiments of the method include cal-
culating a percentage difference as ((unknown’s value-
known’s value)*100/known’s value) and control passes to
block 1932. At branch block 1932, if the percentage differ-
ence exceeds a user-provided threshold (where the default
threshold is 100%), then control passes to block 1940
described above; else control passes to branch block 1934,
where if more features are to be examined, control returns to
block 1930. Else, if there are no more features, control passes
to block 1960 and the method calculates an average percent
difference among the features and control passes to block
1962. Then, at branch block 1962, if the fit is good, control
passes to block 1980 and the classification is output; but if the
fit is poor, then control passes to block 1970 described above.

FIG. 20 is a flowchart of a syntactic classifier method 2000
that provides silhouette and/or color-reference-pixel match-
ing according to some embodiments of the invention. In some
embodiments, silhouette matching finds a “center-of-mass”
point of the unknown silhouette that is then placed in the
position of the “center-of-mass” point of the reference silhou-
ette. The unknown silhouette is then matched to the reference,
rotating (e.g., using a linear transform) incrementally
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between each matching operation (and optionally translating
the center-of-mass point) until the orientations of the
unknown silhouette and the reference silhouette most closely
match. In some embodiments, color-reference-pixel match-
ing then takes a known starting point (e.g., a point at the head
of the arthropod) and examines a pixel at a predetermined X
and Y offset (or equivalently at a predetermined angle and
distance) to check for a match of the hue and/or saturation of
that pixel or area on the unknown to the hue/saturation of the
corresponding pixel or area of the reference image (i.e., in
some embodiments, the reference database stores character-
istic “spotprints” of the reference images, wherein at each
pixel of a characteristic set of one or more given X and Y
offsets, arthropods can be distinguished by the hue and satu-
ration found there). Thus, rather than matching the entire
color pattern, a relatively small subset of important or distin-
guishing offsets, hues, and saturations are matched. Some
embodiments combine the matching of silhouette and of hue/
saturation spots after each rotation and/or translation of the
unknown silhouette (or equivalently, in other embodiments,
the prototype silhouette is rotated).

In some embodiments of method 2000, block 2010
includes reading from a reference file a set of one or more
reference “spotprints” (each spotprint having a prototype sil-
houette and a set of characteristic color-reference pixels
(CRP), e.g., in some embodiments, each CRP specifying X
offset, Y offset, hue, and saturation). At block 2020, the
method generates a silhouette of the detected unknown object
(“detection”). From block 2030, for each prototype silhou-
ette, the method starts by translating the silhouette of the
unknown detection so the center of the detection silhouette
overlaps the center of the prototype silhouette and passes
control to block 2040. For each permutation of rotation and
translation of the prototype silhouette, at block 2040, the
method passes control to block 2050. At block 2050, some
embodiments of the method include calculating percentage of
silhouette pixels that overlap (in some embodiments, to
within some given tolerance) the unknown’s silhouette and
control is passed to block 2052. At block 2052, some embodi-
ments of the method include calculating percentage of refer-
ence-color pixels that match hue and saturation of corre-
sponding pixels in original color image and control is passed
to block 2054. At block 2054, some embodiments of the
method include saving this match if the number of matching
pixels is good and if it is among the n best matches found thus
far and control is passed to block 2056. At branch block 2056,
if more orientations are to be tested, then control returns to
block 2040; else control passes to block 2058. At branch
block 2058, if more prototype silhouettes are to be tested, then
control returns to block 2030; else control passes to block
2060. At block 2060, starting with the best acceptable match,
some embodiments of the method include assigning the class
of that best match to the unknown. If a large portion of the
unknown is not explained by the known silhouette, some
embodiments of the method include assigning that portion to
the best acceptable match that covers it. Some embodiments
repeat block 2060 until all portions of detection are classified.
If the unknown or portions of it are not matched then some
embodiments of the method include assigning that unknown
or portion thereof to classification “other.”

FIG. 21 shows a portion of YCbCr space where the lumi-
nosity, Y, is kept at a constant gray level of 128 across the
entire space. The x-axis or columns represent the Cb axis
where values range from —127 on the left most portion of the
image to 128 on the right side of the image (as labeled). The
y-axis or rows represent the Cr axis where the values range
from —127 at the top of the image to 128 at the bottom of the
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image. Note that the hue changes as an angle around the
center or origin (0,0) of the YCbCr color space and the color
becomes more saturated the further you are from the center or
origin of the YCbCr color space. The central pixel of the
image or origin of the YCbCr color space is a point with no
hue or saturation and if it were large enough to see it would
appear as a gray spot with an intensity value ofY, which in this
case is a value of 128.

FIG. 22 shows 2D hue/color saturation histogram for a
halictid bee. The image of the bee from which the data is
derived appears in the upper portion of this figure. Note that
the peak in the center of the Cb/Cr histogram corresponds to
very low color saturation, which in this case, are the black
stripes on the bee’s abdomen and the darker areas along the
edge of the thorax and head. The ridge or peaks radiating out
from the central peak (heading left from the center of the
surface), which is parallel to the Cb axis and is approximately
between the Cr values of 15 and 22, represents the yellow
stripes of the abdomen and what is visible of the yellow legs.
The metallic green color of the head and thorax is represented
by the scattered smaller peaks that lie in the region that is less
than 20 Cb and less than 15 Cr (upper left hand quarter of the
matrix). The further the region is from the center of the space,
the more saturated the color. For example, the ridge repre-
senting yellow indicates that a portion of it near the central
peak is a very light yellow (lots of white, nearly white) while
the area near the left edge of the histogram represents the
brighter yellow colors. The bee from which this image was
generated was also used for one of our demonstrations and
also is the left-most bee in the dorsal training image of FIG.
26.

FIG. 23 shows values of the circular fit/compactness fea-
ture for three classes of geometric shapes. Note that the metric
decreases as the shape becomes less circular (down the col-
umns) or less compact by elongating or stretching the shape
(across the rows).

FIG. 24 shows a flowchart of the general description of a
method of operation 2400 of some embodiments the system.
At block 2410, some embodiments of the invention include
generating a background image of a detection surface (e.g.,
by obtaining an initial or earlier image of the actual collection
surface, or by generating a synthetic image based on a speci-
fication or assumption of what the background image should
be, for example, when using a standardized, pre-printed back-
ground). At block 2412, some embodiments of the invention
include placing insects or other arthropods (or other objects to
be identified) on the collection surface (e.g., by using a sticky
surface and attracting the arthropods to the surface where they
land and become stuck, or by using a net or other collection
mechanism to catch the arthropods, then immobilizing the
arthropods and placing them on a scanner surface). At block
2414, some embodiments of the invention include acquiring
one or more images. If at branch block 2416, it is desired to
perform a training operation, control is passed to block 2420;
else control is passed to block 2430. At block 2420, some
embodiments of the invention include generating character-
istic or identifying features and/or silhouettes of the objects
(for example, in some embodiments, these objects include
arthropods that have been pre-identified or classified by an
expert entomologist), and control is passed to block 2470. At
block 2470, some embodiments of the invention include
saving the data regarding the pre-identified objects into a
feature file and optionally into a silhouette file. If at branch
block 2416, it was desired to perform an identification-of-
unknown(s) operation, control was passed to block 2430. At
block 2430, some embodiments of the invention include ana-
lyzing the unknown image and passing control to block 2440.
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At block 2440, some embodiments of the invention include
detecting an object (e.g., the unknown arthropod to be iden-
tified) and passing control to block 2450. Atblock 2450, some
embodiments of the invention include extracting features and
optionally the silhouette of the unknown object (e.g., arthro-
pod) and passing control to block 2460. At block 2460, some
embodiments of the invention include classifying the
unknown arthropod by comparing its features with reference
data from the feature file generated in an earlier training
operation (block 2420) and passing control to block 2480. At
block 2460, some embodiments of the invention also include
saving information as to the unknown (e.g., its place and time
of collection, the silhouette and/or color-reference pixels, the
classification that was determined, etc.) into a classified-un-
known-arthropods section of a results file and then passing
control to block 2480. At block 2480, the arthropod classifi-
cation or identification have been made, and some embodi-
ments of the invention include outputting or transmitting a
report (e.g., to governmental or commercial organizations, or
to the user who requested the identification service).

FIG. 25 and FIG. 26 show two images used for generating
the identifying reference features. ScanDorsalTraining.bmp
(FIG. 25) has the dorsal view of eleven insects while Scan-
VentralTraining.bmp (FIG. 26) has the ventral view of the
same eleven individuals. The top row has two flies of a syr-
phid species with yellow longitudinal stripes on its thorax; the
second row has two asparagus beetles and a second species of
syrphid fly; the third row has three halictid bees; the fourth
row contains a blow fly; and the bottom row has two multi-
colored Asiatic Ladybird beetles.

FIG. 27A and FIG. 27B show two test images of the same
ten insect individuals. ScanDorsalTest.bmp (FIG. 27A) con-
tains the test insects with their dorsal side exposed to the
scanner while ScanVentralTest.bmp- (FIG. 27B) has the ven-
tral view of the insects. The top row includes two syrphid flies
of'the species with a yellow stripped thorax. The second row
has a halictid bee and a second species of syrphid fly (right).
The third row contains a blow fly (left) and a halictid bee
(right). The fourth row has two multicolored Asiatic ladybird
beetles. Bottom row includes two asparagus beetles.

FIG. 28A and FIG. 28B show the test case containing
dorsal views of ten garden insects (FIG. 28A, as in FIG. 27A)
and the successful detection and recognition of these insects
(FIG. 28B). A portion of the abdomen of the top left most
insect, a syrphid fly, was detected as a separate object, as was
a portion of the right wing of the syrphid fly colored in blue.
These two detections were rejected during connected com-
ponents analysis as too small. Objects were rejected if they
were less than half the area of our smallest reference speci-
men, the asparagus beetle.

FIG. 29A and FIG. 29B show the test case containing
ventral views often garden insects (FIG. 29A, as in FIG. 27B)
and the successful detection and recognition of these insects
(FIG. 29B).

FIG. 30A and FIG. 30B show a test image of insects in
clutter (FIG. 30A) and the output results image with the
correct detection and identification of the objects (FIG. 30B).
The plant material has been automatically labeled red to
indicate it belongs to the class of objects that are not of
interest, and which is called OTHER. Note that the syrphid fly
at the top of the image is missing its abdomen and the aspara-
gus beetle at the bottom of the image has lost its head and
thorax.

FIG. 31 shows an image that simulates a snapshot from a
previous sampling period. It will be used as a background
image to compare with a more recently collected sample
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image. The image contains an asparagus beetle (top), a mul-
ticolored Asiatic ladybird beetle (middle) and a green ash
seed (bottom).

FIGS. 32A-32F show prototype silhouettes for garden
insects. FIG. 32 A shows the syrphid fly species with a striped
thorax, FIG. 32B shows an asparagus beetle and FIG. 32C
shows a second species of syrphid fly with no stripes on the
thorax. FIG. 32D shows a halictid bee, FIG. 32E shows a blow
fly and FIG. 32F shows a multicolored Asiatic ladybird
beetle.

FIG. 33 shows a test image of insects being overlapped by
other insects or clutter called Occ2A.bmp. Two asparagus
beetles are abutting one another (top) while two multicolored
Asiatic ladybird beetles touch one another in the middle of the
image. Approximately half of a halictid bee is occluded by an
ash seed (bottom).

FIG. 34—Successful detection and classification in the
case of occlusion when the object doing the occluding can be
subtracted from the current image by taking the difference
between the current image and a previous image that contains
the occluding object. The second asparagus beetle (top left),
the second ladybug (lower middle) and the halictid bee (bot-
tom) were detected and correctly identified by the nearest
neighbor classifier. The identification of the halictid bee was
also confirmed by the silhouette matching routine.

FIGS. 35A-35C show silhouette matching. The occluded
halictid bee’s silhouette matched best with a prototype sil-
houette of a halictid bee as shown in FIG. 35C. The silhouette
of the known is colored blue while the unknown’s silhouette
is red. Where they overlap the pixels should appear purplish.
The image of FIG. 35A the left is the silhouette of the
occluded bee, while the silhouette of the halictid bee proto-
type is presented in FIG. 35B.

FIG. 36 shows color coding of the best matches for three
cases of occlusion when there was no background image with
information about previously collected insects. In this case
the BugClassify program estimated the background image.
The color coding indicates that according to the nearest
neighbor classifier the pair of asparagus beetles (at the top)
best matched a blow fly while the pair of ladybug beetles (in
the middle) and the ash seed with a halictid bee (at the bottom)
matched the syrphid fly species with the striped thorax. How-
ever, the matching metric of the nearest neighbor classifier
indicated that none of these matches were good matches.

FIGS. 37A-37F show silhouette matching results for three
cases of occlusion. Each row represents the results of a dif-
ferent pair of occluded objects: two asparagus beetles (FIGS.
37A-37B on the top row), two ladybird beetles (FIGS. 37C-
37D on the middle row), and a halictid bee occluded by an ash
seed (FIGS. 37E-37F on the bottom row). In the case of the
beetles, silhouette matching detected and identified each one.
The best match among each pair of beetles is shown by the
image on the left while the second beetle was the next best
match (image on the right). For the case of the occluded
halictid bee (FIGS. 37E-37F onthe bottom row) the prototype
silhouette and representations of the additional sample pixels
for color are displayed on the lower left image (FIG. 37E,
which shows a prototype silhouette (shown in blue) and spot-
prints (the green and black crosses and the yellow sideways
Ts) for a halictid bee). These reference sample colors indicate
green on the head and thorax and the yellow and black stripes
of'the abdomen. The best overall silhouette match (including
the color match) for the bee is shown in the lower right image
(FIG. 37F).

FIGS. 38A-38C show three of the best silhouette matches
for the occluded bee. In all three cases the prototype silhou-
ette was a halictid bee. The spurious correlations of the
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images FI1G. 38C on the right and FIG. 38A on the left were
actually slightly better than the correct match (FIG. 38B, the
middle image) in terms of the number of silhouette pixels that
were matched. However, the correct match was better overall
because three of the six color pixels matched the original
image’s color, while those of the other two correlations did
not match the color of the seed and were rejected.

FIG. 39 shows equipment setup used in some embodiments
for testing the concept of automated detection and identifica-
tion of arthropods using a digital color camera as part of the
system.

FIG. 40 is an image of a detection surface before weevils
are “collected” or placed for identification on it.

FIG. 41 is an image of seven boll weevils used for training
the classifier. From left to right: weevil on its side, weevil on
its side, weevil partially on its side and back, weevil on its
back, weevil on its side, weevil sitting on its posterior and a
weevil on its abdomen.

FIG. 42 is an image of a detection surface after three
weevils were “collected” by a detection device that is based
on the described system and software. This was the first of
two test images. It is called wst0.bmp.

FIG. 43 is an image of a second test image, wstl.bmp.
Detection area after three additional insects, two more boll
weevils and a cantharid beetle, were “collected.” In this pic-
ture each insect is identified by a label to its left, BW for boll
weevil and CB for cantharid beetle.

FIG. 44 is an image output following processing. Three
weevils were detected, classified and counted. Detected
regions that were classified as a boll weevil are colored green.
Had there been any insects classified as OTHER than boll
weevils, they would have been colored red by the software.
See FIG. 45 for an example of how an insect other than a boll
weevil was color coded in this experiment.

FIG. 45 shows an image output following processing. Five
boll weevils and one non-boll weevil were detected. Detected
regions that were classified as a boll weevil are colored green
and detected regions that were classified as non-boll weevil
are colored red by the software.

FIG. 46 shows a distribution of the reference boll weevils
(training weevils), unknown or test weevils and the cantharid
beetle in a three dimensional feature space where the dimen-
sions or features are total area (z-axis) and the two parameters
that characterize the insects color, Cr (red saturation, y-axis)
and Cb (blue saturation, x-axis). Note that each of the
unknown boll weevils is relatively close in feature space to a
reference specimen of a boll weevil, while the cantharid
beetle is a significant distance away from the reference wee-
vils. For total area the cantharid is 9.2 standard deviations
away from the average area of the reference weevils, 3.1
standard deviations away from the average weevil’s Cr value
and 4.2 standard deviations from the average Cb value of the
reference weevils. Based on Grubbs’ test for outliers using
the area feature, the cantharid can be rejected as belonging to
the boll weevil population with a probability of error that is
less than 1%. Based on the Cb feature the Grubbs’ test rejects
the cantharid as a boll weevil with a probability of error that
is less than 2.5%. The Grubbs’ test indicates that if the
cantharid is rejected as a weevil based on its Cr value only,
there is a probability of error a little over 10%.

In some embodiments, a suite of image-processing and
pattern-recognition algorithms implemented in software that
enable the detection and classification of arthropods with
minimal human involvement and provide robust results under
varying and complex conditions such as: arthropods among
extraneous objects, arthropods in varying positions and ori-
entations, overlapping specimens or occlusion, incomplete or
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damaged specimens, and image artifacts such as shadows and
glare. In some embodiments, both the detection and classifi-
cation process take advantage of color information, namely
hue and color saturation, in addition to luminance or the
intensity of reflected light. In some embodiments, classifica-
tion includes two levels of processing: 1) an initial statistical-
feature-matching classifier for quick results on its own or to
act as a screening function to pass on more complex classifi-
cation problems to a second level classifier; and 2) a compu-
tationally more complex syntactic classifier that deals with
difficult problems including clutter, incomplete specimens
and occlusion. The statistical-based classifier extracts a hue
and saturation histogram, measurable size, shape, luminance
and/or other color features and compares them to the same
types of features similarly extracted from reference speci-
mens. This classifier provides a quick and efficient means of
arthropod classification and is able to assign a confidence
level or metric to its classification decisions. In some embodi-
ments, if the confidence measure of the statistical classifier is
deemed low compared to user defined thresholds, the statis-
tical classifier passes the final decision to the second level
classifier. The second level classifier searches for structural
details of the arthropod, normally the arthropod’s silhouette,
and spatially relates these structures to the location of patterns
of color on the arthropod.

The extensive use of color information for both detection
and classification, luminance for classification and the two
tier classification approach enable a practical systems for the
automatic detection and classification of insects in the field or
in laboratory settings where there is little control over what is
in the camera’s field of view and how objects are arranged in
that field of view.

The present invention integrates highly automated sys-
tems, which include devices, processes, software and graph-
ics, to acquire, process and display images for the detection
and classification of arthropods. Moreover, the present inven-
tion is able to detect and classity insects and other arthropods
under conditions that make counting and classifying difficult
such as: 1) the presence of objects that could be mistaken for
arthropods, which can be referred to as clutter; 2) the presence
ofartifacts such as shadows; 3) the presence of overlapping or
occluding objects; and 4) incomplete insects due to injury or
damage.

In some embodiments, the present invention’s image-pro-
cessing system performs both the automatic detection and
classification of unknown arthropods. It performs despite the
presence of clutter, occlusions, shadows, and the arthropods’
appearing in a variety of positions and orientations. Thus, the
present invention doesn’t require a highly controlled environ-
ment where the only objects that can be detected are arthro-
pods, and it will classify insects/arthropods regardless of their
position and orientation. This means it can be used for a wide
range of field applications. The present invention also uses
color information in innovative ways in both the detection and
classification processes. The aspects of color used in some
embodiments are both hue (the dominant color or wave-
lengths) and color saturation (the purity of the color). In
addition to color, some embodiments use luminance or rela-
tive light intensity.

In some embodiments, the present invention includes a
classifier that differs from those of the other applications in a
key way: it uses a two stage approach to detection and clas-
sification. The method for the first level of classification is a
classifier that uses statistical features (feature classifier). This
classifier can be used alone for applications where the user
knows in advance that arthropod classification will be rela-
tively easy (no clutter, no overlapping arthropods, and each
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species is very distinct in appearance) or if the user is con-
cerned more with processing speed than accuracy. Otherwise,
the statistical-feature-based classifier acts to screen out
unlikely classes for an unknown so the second more compu-
tationally demanding classifier will not take as much time to
generate an answer. The second-level classifier is referred to
as a syntactic pattern or structural pattern recognition method.

In some embodiments, the system includes a database for
the first level classifier. The database includes numerical data
for classification that are taken from known reference speci-
mens of arthropods. The reference specimens reflect the
diversity in form and appearance of different populations and
species as well as represent the different positions and orien-
tations that specimens can take. When the system is used to
classify unknown specimens the first level classifier com-
pares quantitative measurements of size, shape, luminance
and color features from each unknown with those from the
reference specimens (database). This classifier allows the
user to use all of the available features or select a subset of
them based on the advice of human taxonomic experts. An
experienced human taxonomist is more likely to develop a
more reliable and robust approach to classifying arthropods
than a computer program. The human insect taxonomists
have a better way to assign taxonomic importance to various
features and can readily adjust the classifier to very specific
situations which an artificial intelligence approach is unlikely
to do.

In some embodiments, a second level classifier does syn-
tactic or structural pattern recognition. Statistical-feature-
based classifiers identify objects in a strictly quantitative way
and tend to overlook the interrelationships among the com-
ponents of a pattern (Tou, J. T., and R. C. Gonzalez. 1974.
Pattern Recognition Principles. Addison-Wesley Publishing.
pp- 377). Syntactic classifiers look to see if the pattern of an
unknown matches a known case by having the same essential
components or features and that these components are linked
orarranged in an identical way. Some embodiments do this by
using an innovative approach to extending a “silhouette
matching” method by including color information. In silhou-
ette matching, the classifier translates, rotates and scales the
2D silhouette of a known object over the silhouette of the
unknown until it finds the best match. It repeats this process
for each possible known and then assigns the unknown to the
class of the prototype or reference silhouette that had the best
overall match. In some embodiments, this method is extended
by including sample points in addition to those along the edge
or silhouette of the object. The additional sample points are in
fixed positions relative to the silhouette. Each point inside the
silhouette contains color information for that pixel or pixel
neighborhood. The sample points are chosen to capture any
distinctive color patterns that an arthropod may have. In this
way the present invention examines the interrelationship
between the general shape of the insect and its color by
checking whether the unknown has the right colors in specific
places relative to the silhouette. The best match should not
only have many of the pixels from both the known and
unknown silhouette overlap or be a short distance away, but
the colors of the internal reference points must also closely
match. The extended silhouette matching classifier is superior
to the statistical classifier in that it can often find a correct
match when only a portion of the arthropod can be seen while
a statistical-feature classifier will normally fail to fine the
correct class under such conditions.

Because the present invention is practical, robust, accurate
and time saving, it reduces the cost of sampling arthropod
populations and frees zoologists, ecologists and pest-man-
agement professionals to work on more productive tasks. In
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addition, the present invention technology has very broad
application to object detection in general.

Conceptual Description of Process, Devices and Algo-
rithms for Automated Detection and Classification of Arthro-
pods

First, a general description of the present invention is pro-
vided. This includes the general system configuration, gen-
eral description of the operation of the system, its devices and
algorithms. Then the actual applied use of the present inven-
tion is demonstrated for three embodiments in detecting and
classifying arthropods. Demonstrations simulate the detec-
tion and classification of insects in situations similar to the
following: 1) insects placed on a surface for automatic clas-
sification in an ecology laboratory where students need to
classify and count insects; 2) at customs facilities, ports of
entry or any other areas where introduction of certain arthro-
pods are being prevented; 3) where a pest management scout
has emptied the contents ofhis collection net/tool on a surface
for automatic classification and counting; and 4) insects stuck
to a sticky, colored surface of a trap that may or may not be
baited with an attractant, such as a pheromone, and which is
used to monitor insects in the field.

General System Configurations:

The present invention’s automated arthropod classification
system, at its core, includes a detection surface where the
arthropods to be classified are found, an imaging device
(scanner, digital camera or video camera) to collect their
images, and a computer with software to operate the imaging
device, process and analyze the images and to present the
results. One embodiment of a simple system would be a
scanner 621 or digital camera 611 that communicates directly
with the user’s computer 699 using a cable 631 such as a USB
(Universal Serial Bus) connector or wireless communications
link 639, as shown in FIG. 6. The user’s computer is also
referred to as the host computer since it hosts the software to
control the imaging device and process the images for the
classification of arthropods. Thus, from the user’s computer,
one can: 1) control the settings for the scanner or camera; 2)
request an image immediately from the imaging device or
else schedule the automatic periodic collection of images; 3)
automatically process the images to detect and classify the
arthropods; and 4) examine the collected images and review
the results of the automated detection and classification.

Alternatively, in some embodiments, the imaging device
can transmit images to the host computer and receive instruc-
tions from the host computer via a dial-up modem connec-
tion, internet connection or a wireless communication device.
Some embodiments that use a camera also include an illumi-
nation device to facilitate the acquisition of images of the
surface (detection surface 624) where the arthropods to be
detected are found.

More complex embodiments will rely on multiple imaging
devices connected via a network (wired and/or wireless) to
the user’s computer. The scheduling of the sampling and the
processing of the images would still be done from the user’s
host computer. An even more advanced embodiment of an
arthropod-sampling system, in some embodiments, includes
many independent arthropod-detection units sending back
the images and processed results to the user’s computer. Each
arthropod-detection unit would include a trap or detection
surface, illumination device, camera, camera lenses and fil-
ters, processor and communication device. Each unit in addi-
tion to collecting an image would do the detection and clas-
sification processing with its own processor or CPU (central
processing unit) and then send compressed images and the
results of processing to the user’s computer/host computer for
review. The user could adjust settings for the individual cam-
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eras, schedule the sampling times and set the processing
parameters for each of the units from the host computer, as
well as review the results from the units.

In some embodiments, the host computer includes the fol-
lowing off-the-shelf, commercially available software:

1. Operating system.

2. Software to initiate image collection via an imaging
device.

3. Microsoft Paint—examine input, intermediate and final
result images.

4. Microsoft Notebook—examine output text file and edit
input text file for some embodiment, sometimes called the
feature file.

5. Starbase’s CodeWright—another text editor, to develop
the C code for applications of some embodiments and to
examine output text files and examine and edit the feature
files.

6. Microsoft Visual C++—to develop and compile some
embodiments’ executable programs, such as BugClassi-
fy.exe.

In some embodiments, the present invention software
includes:

1. BugClassify.exe—executable software used to train a
system’s statistical classifier and to process images for the
detection and classification of arthropods.

2. MakeSilh.exe—executable software integrated with a
main program BugClassify.exe—executable software that
takes a segmented image or labeled image of the detected
arthropods, and generates an image containing the silhouette
of each detected object (also called a “detection”). This is
used for research and development using silhouettes for
arthropod classification.

3. GetSilhCode.exe—executable software that extracts a
compressed representation of an object’s silhouette, called
the chain code, and inserts the chain code into a special
silhouette file. This is used to develop prototype silhouette
files and to do studies with silhouette files. 4. TransSilh.exe—
executable software that does silhouette matching in place of
BugClassify.exe when doing silhouette-matching studies.

In some embodiments, the imaging device (scanner, digital
camera) includes software to adjust camera or scanner set-
tings such as brightness, spatial resolution (dots per inch) and
color resolution (number of bits of color) as well as request
the collection of an image.

Specific configurations of some embodiments for the dem-
onstrations described here appear in their respective sections.

General Description of the Operation of the System

This section describes an embodiment to configure a sys-
tem to detect and classify insects that are on a detection
surface 624. The insects may have been collected by sampling
insects from a habitat, for example by using a sweeping net or
other sampling device. The person places the insects on the
detection surface 624 of the system and has the insects auto-
matically classified and counted. The described embodiment
also works when the insects that are to be detected and
counted were trapped after they flew or crawled onto a sticky
detection surface 624 in the field.

One embodiment of a system follows and is summarized in
a flowchart 2400—see FIG. 24:

A. Generation of a background image.

B. Generation of arthropod-identifying reference features
and prototype silhouettes.

C. Acquisition of images of the unknown arthropods to be
detected.

D. Arthropod detection.

E. Feature extraction.

F. Classification of arthropods.
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A. Generation of a Background Image

Normally, the first function is to collect a background
image of the detection surface 624 prior to placing insects on
it. The scanner or camera acquires an image of this surface
without any objects on it. This reference image aids in the
detection of the arthropods and other objects that will even-
tually appear on the surface. The background is used to look
for changes in the quantity, hue and color saturation of the
reflected light due to the presence of the arthropods. FIG. 40
from EXPERIMENT 3 shows an example of a background
image.

Although it is advantageous to include a background image
or previous image as input for accurate insect detection, a
system doesn’t require it. As an alternative, software has the
option of estimating what the background or detection sur-
face 624 would look like in terms of color and luminance in
the absence of any arthropods. The terminology used here
follows the RGB color model (Weeks, A. R. 1996. Funda-
mentals of Electronic Image Processing. Wiley-1EEE Press.
pp. 576). Software can calculate the median R (red), G
(green), B (blue) and gray-level values as well as their stan-
dard deviations from among all the pixels, and then use these
values as estimates of the background detection surface 624.
This is valid at least as long as most of the detection surface’s
area is visible and the one or more various background areas
of detection surface 624 itself are each relatively uniform in
color and luminosity (which each is, by design, in some
embodiments). An estimated background image is created by
using the original RGB values of each pixel, provided that
they are within a specified number or fraction of a standard
deviation of the median RGB values. Otherwise, if any of the
pixel’s RGB values differ significantly from their median
values, it may be part of an object, and its RGB values are
replaced with the median values. Alternatively, all the pixels
of the estimated background image can use the median RGB
values.

After acquiring the background or reference image, there
may be a need to enhance the image before any further pro-
cessing can be done. This could also be true for the images
containing the insects to be counted and classified. Image
enhancement to correct for distortions or noise is an optional
feature in some embodiments.

If the angle formed by the camera’s line of sight and the
detection surface or insect(s) deviates from the perpendicular,
there can be significant distortion due to perspective. It is
possible that in some applications, particularly where a per-
son may wish to examine the images, perspective distortion is
unacceptable. In this case, the present invention can map each
pixel’s value via geometric transformation to a different coor-
dinate system (different row and column) that corresponds to
a top-down or perpendicular view. During calibration, the
present invention measures the real-world coordinates of four
points in the distorted image space. With these four points the
present invention can solve for the coefficients that will per-
mit software to map pixels in the image into a normal view
(Russ, J. C. 1995. The image processing handbook. 2nd edi-
tion. CRC Press. pp. 674). Gaps or missing values in the
transformed image can be filled in through interpolation.

Image enhancement may also be needed if there is a sig-
nificant amount of noise in the image. Two basic approaches
can be used to filter out noise: temporal or spatial smoothing.
When a sequence of images can be collected over a short
period of time, an enhanced image can be created by replac-
ing the value at each pixel location with either the arithmetic
average or median of that pixel from among the replicated
images. The resulting smoothed image will be enhanced and
have little noise, provided that the scene does not change
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between images and that the noise is nearly random over time
at each pixel. Using the arithmetic average for each pixel is
desirable in most cases, as it requires fewer computations
than calculating the median.

When it is not practical to collect several images to reduce
noise, a spatial filter can be applied. In this case the pixel of
concern is replaced with the arithmetic average of its value
and those of its neighbors. Alternatively, the pixel can be
replaced with the median of the values in its neighborhood.
While the arithmetic average is computationally quicker than
calculating the median, the median is sometimes desirable as
it is less likely to blur the image along contrasting areas or
boundaries within the image.

Although the above noise-filtering techniques are standard
image-processing techniques, some embodiments have two
modifications to these approaches to noise reduction. To pre-
serve as much of the original image information as possible in
the case of spatial averaging, some embodiments use the
original pixel value except when the difference between the
averaged value and original is large. When there seems to be
a significant difference, some embodiments use the averaged
or median value. In this way, the original information is
retained except for cases where noise may have caused a
questionable value. In some embodiments, a second approach
deals with the averaging of color. Even though the previously
described filtering methods work well for black-and-white
images or the luminance portion of a color image, in some
image formats or color models just averaging each color
component can lead to unintended or distorted color. For
example in the RGB format, if one takes the average of a
reddish colored pixel (R=248, G=8, B=112) and greenish
pixel (R=8, G=248, B=112) it would result in a gray pixel
(R=128,G=128, B=112). This may not be what was intended.
The two input pixels had high color saturation and the result-
ing average has a very low saturation. One way color distor-
tion can be avoided when smoothing the image values is to
use the color components of the pixel with the median lumi-
nance value.

B. Generation of Identifying Reference Features and Pro-
totype Silhouette

Before some embodiments can identify unknown arthro-
pods, there must be a set of features and silhouettes (optional)
from known or identified arthropods which can be compared
with the features and silhouettes of the unknown arthropods.
This section describes the features and silhouettes. At the end
of this section is a list and description of the commands and
functions that some embodiments use to generate the refer-
ence features and prototype silhouettes.

Some embodiments use a collection of statistical Identify-
ing Reference Features extracted in advance from known
arthropods or reference specimens. A set of each of these
Identifying Reference Features is taken from each reference
specimen and they are used by the system’s statistical classi-
fier to identify the unknown arthropods. A plurality of such
feature sets are collected, in some embodiments, from speci-
mens of each arthropod species that the system is expected to
encounter or required to recognize. This insures that the sys-
tem includes representatives of the natural variation among
individuals of a species and the different orientations in which
the arthropods may appear. In some embodiments, the sets of
reference features are stored in the computer’s memory as a
file which is called a feature file.

In some embodiments, features are extracted from images
of identified arthropods by the same processes (functions C,
D and E) as described below, for the classification of
unknown arthropods. These features become part of a data-
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base of known arthropods. In some embodiments, features
characterize each reference arthropod and fall into one of four
types of information:

1. Size: This set of features includes: a) total area; b)
perimeter; ¢) the length of the major axis (body length); d) the
length of the minor axis (body width); and e) the minimum
rectangular area that bounds the detected or labeled area.

2. Shape: This set of features includes: a) the ratio of the
total area to the minimum bounding rectangular area (mea-
sure of how rectangular the object is); b) 4(pi) times the total
area divided by the perimeter square (a measure of how cir-
cular and compact the object is); and ¢) height to width ratio
or major axis to minor axis ratio (a measure of elongation).

3. Luminance: Information on the brightness or relative
intensity of the reflected light from the arthropod is currently
described by two features: a) the average luminance or gray-
level value of each pixel of the detection relative to its back-
ground; and b) the coefficient of variability in the relative
gray-level values among the detection’s pixels. The coeffi-
cient of variability is the statistical standard deviation divided
by the mean and expressed as a percentage. Some embodi-
ments use a histogram of the luminance values of the arthro-
pod’s pixels as a way of characterizing its reflectivity.

4. Color: In some embodiments, a Color Feature or 2D
hue/color saturation histogram provides a simple and practi-
cal way to summarize the colors of arthropods. This Color
Feature invention is an improvement for object identification
and is derived from the standard color format called the
YCbCr color model (Weeks 1996) which is used in video and
television.

In some embodiments, the color feature (feature vector) is
used to provide a simple, powerful and practical way to sum-
marize the color of an arthropod or insect that is independent
ofrotation in the image as well as scale. The color information
associated with each pixel of the arthropod is translated in to
YCbCr color space whereY represents the pixel’s luminance
or brightness and Cr and Cb represent the color saturation
level for red and blue, respectively (Weeks 1996). The hue,
for a point in the CbCr space, is represented by the angle
formed by the x-axis and a line from that point to the center of
the space. The distance from the point to the center of the
color space represents the level of saturation for that point.
The center of the space has no color and represents the gray-
scale value or luminance of the pixel.

FIG. 21 illustrates an example of a portion of a YCbCr
color space where Y is kept at a constant gray-level value. In
some embodiments, using this concept of the YCbCr color
space, the software routine, BugClassify.exe, is programmed
to generate a 2D histogram where the rows represent the Cr
value and the columns the value of Cb. Each bin of the
histogram contains the percentage of the pixels associated
with the arthropod that have that combination of Cr and Cb or
that combination of hue and color saturation. FIG. 22 graphi-
cally shows an example of the 2D hue/saturation color histo-
gram generated from an image of one colorful insect (halictid
bee). This figure also illustrates how the 2D histogram repre-
sents quantitatively and qualitatively the metallic green, yel-
low and black color of the halictid bee.

In some embodiments, the Cr and Cb values of each image
pixel are represented by an eight-bit value. Therefore, it
would be natural to have a histogram with 256 columns and
256 rows. However, most of the bins will be empty (contain a
zero, as there were no pixels with that combination of Cr and
Cb). To avoid a sparse matrix, that is a histogram with most of
the elements having a value of zero, some embodiments gen-
erally use only the upper 5 bits of each Cr and Cb value. This
saves memory space and reduces the time or number of cal-
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culations needed to classify insects when a comparison is
made of the matrix of each unknown insect with the matrices
of the reference insects. Thus, the size of the matrix can be
altered to allow for varying color resolutions.

The size and shape of the CbCr color space changes with
luminance. Therefore, the lighting conditions for collecting
images of the reference insects and the unknowns (i.e., insects
to be detected and classified) are kept as nearly identical as
possible to insure a valid match. In some embodiments, sev-
eral other color space models are used for a 2D hue/saturation
color histogram, such as the HIS, YIQ, HLS, HSV, CMY or
L*u*v* color models. The L*u*v* color model would be a
good candidate if illumination complicates some embodi-
ment’s color-matching approach. Ong et al. (Ong, S. H.,N. C.
Yeo, K. H. Lee, Y. V. Venkatesh, and D. M. Cao. 2002. “Seg-
mentation of color images using a two-stage self-organizing
network.” Image and Vision Computing 20(4), pp. 279-289)
used the L*u*v* color space to determine the dominant col-
ors in images for segmentation (labeling the pixels making up
an object). They found by using the L*u*v* color space, the
influence of illumination on colors was greatly reduced.

Color histograms have been used in the past for segmenta-
tion and for characterizing images so that an image can be
matched quickly with another in an image database. For
example, Chai et al. (Chai, D., and A. Bouzerdoum. 2000. “A
Bayesian approach to skin color classification in YCbCr color
space.” IEEE Region Ten Conference, (IENCON ’2000),
Kuala Lumpur, Malaysia, vol. II, pp. 421-424, September
2000)used a 2D color histogram based on YCbCr color space
to segment human faces in images. They used the 2D color
histogram to create a conditional probability density function
for skin color which was then used to decide whether indi-
vidual pixels in an image belonged to human skin. The inven-
tors believe the present invention’s 2D hue/saturation color
histogram is the first application of a 2D color histogram as a
feature for the identification of objects within an image. A 1D
color histogram was used by Di Ruberto et al. (Di Ruberto, C.,
A. Dempster, S. Khan, and B. Jarra. 2002. “Analysis of
infected blood cell images using morphological operators.”
Image and Vision Computing 20(2), pp. 133-146) as a feature
to distinguish red blood cells from other blood cells. They
mapped the pixels of reference red blood cells to a 1D color
histogram where the elements of the histogram represented
256 colors taken from an HSV color space. This reference
histogram then was matched with 1D color histograms
extracted from unidentified blood cells. A 2D color histogram
should be more effective at distinguishing subtle color differ-
ences among different insect species than just a 1D color
histogram.

Some embodiments have the option of applying a second
level of classification in addition to the statistical-feature
classifier. Some embodiments optionally generate a second
computer file called the “prototype silhouette file” for the
syntactic-silhouette-matching classifier. The silhouette file
contains numerical information that encodes the 2D silhou-
ette pattern along with color reference points for each of the
known reference specimens. The encoded form of the silhou-
ette is referred to as a chain code (Ballard, D. H., and C. M.
Brown. 1982. Computer Vision. Prentice-Hall, Inc. pp. 523).
Chain code saves a great deal of computer memory compared
to listing the x and y position of each pixel making up the
silhouette of the arthropod reference. A graphic example of
the content of one of these prototype silhouette files is given
in FIG. 32 and an example prototype silhouette illustrating
the color reference points in addition to the silhouette is given
in FIG. 37.
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Prior to extracting the reference features and/or the proto-
type silhouettes, some embodiments are configured in one of
two ways:

Configuration 1
A. Imaging device: scanner.

B. Detection surface: scanning surface of scanner.
C. Computer:

1. DOS operating system.

2. Software to operate scanner.

3. Microsoft Paint—used in some embodiments to exam-
ine input, intermediate and final result images.

4. Microsoft Notebook—used in some embodiments to
examine output text file and edit the input text file, called the
feature file.

5. Starbase’s CodeWright—to develop the C code for
applications and to examine output text files and examine and
edit the feature files.

6. BugClassify.exe—executable software used in some
embodiments to train the system’s statistical classifiers and to
process images for the detection and classification of arthro-
pods.

7. MakeSilh.exe—executable software integrated with the
main program BugClassify.exe of some embodiments. This
software takes a segmented image or labeled image of the
detected arthropods and generates an image containing the
silhouette of each detected object. This is used for research
and development with silhouettes for arthropod classifica-
tion.

8. GetSilhCode.exe—executable software that extracts a
compressed representation of an object’s silhouette called the
chain code and inserts the chain code into a special silhouette
file. Some embodiments use this to develop prototype silhou-
ette files and to do studies with silhouette files.

9. TransSilh.exe—executable software that does silhouette
matching in place of BugClassify.exe when classification of
arthropods by silhouette matching is required.
Configuration 2
A. Imaging device: Digital camera.

B. Detection surface: Sticky surface where insects are
trapped.
C. Computer:

1. DOS operating system.

2. Software to initiate image collection via an imaging
device.

3. Microsoft Paint—examine input, intermediate and final
result images.

4. Microsoft Notebook—See above.

5. Starbase’s CodeWright—See above.

6. BugClassify.exe—See above.

7. MakeSilh.exe—See above.

8. GetSilhCode.exe—See above.

9. TransSilh.exe—See above.

In other embodiments, Windows, Linux, UNIX, or other
suitable operating system may be used. Other image manipu-
lation and text programs may also be used.

To operate the system, the user executes the following
procedure to extract the features and create the feature file.
The user places classified reference specimens on the surface
of the imaging device, acquires images of the specimens
using the imaging device and saves these images as files in the
computer’s memory. Using the software that comes with the
scanner or camera, the user clicks on the capture image but-
ton. Once the image is captured the user presses the save
function. The software requests a file name and image format.
Theuser types in a file name of the user’s choice for the image
and then must select the bitmap format, BMP, for the image
file before hitting the save button. The reference features are
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generated by executing the invention’s detection and classi-
fication software, called BugClassify.exe, in what is referred
to as the “training mode,” with the image of the known pro-
totypes or reference insects as input. In the “training mode”
the software executes in exactly the same manner as in the
“detection/classification mode” until the last function, clas-
sification. Instead of trying to classify the insects, in the
“training mode” the software saves the feature set associated
with each known insect to a file called the feature file (Iden-
tifying Reference Feature file).

To execute the program, BugClassify.exe, to generate the
reference feature file the user must bring up a DOS window in
a Microsoft Window’s operating system. There are several
ways to invoke BugClassify on the command line in order to
create a feature file, 4 of which are shown here:

BugClassify input_reference_image_filename input_
background_image_{filename trainingmode

or

BugClassify input_reference_image_filename input_

background_image_{filename feature_filename -train
or
BugClassify input_reference_image_filename estimate-
background trainingmode
or
BugClassify input_reference_image_filename output_
background_estimate_filename  trainingmode-back-
ground
On the command line, BugClassify must be typed in, fol-
lowed by at least three arguments or character strings. Those
arguments that are shown in italics indicate names that the
user chooses. Those words that are not in italics are key words
that BugClassify recognizes. Optional arguments that follow
the first three always start with a dash to identify them as
optional parameters. The first argument is always the name of
the image file, that is, either the image containing the refer-
ence arthropods for training or the unknown arthropods to be
counted and classified. The second file is always an image that
shows what the background looked like before arthropods
were placed on the surface or the image from the last sam-
pling period. If the user does not have a background image,
she or he can substitute a file name with the string, “estimate-
background” (third example above). This informs BugClas-
sify that there is no background image and that it must esti-
mate one from the input image; by default BugClassify will
save this estimated background image to a file called Back-
groundImg.bmp. Alternatively, if the user wants a different
name for the estimated background image, he or she types this
filename as this second argument, and anywhere after the
third argument they must enter the optional argument “-back-
ground” to indicate that a background image must be calcu-
lated (see fourth example above). The third argument is the
name of the feature file to be used during detection and
classification. Since a feature file is not present at the time of
training, one needs to be created. This can be done in one of
two ways, as shown in the first and second examples above. A
feature file can be generated by typing the string “training-
mode” as the third argument (see first, third and fourth
examples above). This tells BugClassify to use the input
image as an image containing reference specimens. By
default BugClassify will save the feature sets to a file called,
TrainFile.txt. If the user wishes a different name for this
feature file, she or he should use the name that is wanted as the
third argument, but must also add the optional string, “~train”,
anywhere after this third argument (as in second example
above). The optional string, “-train”, tells BugClassify to
execute in the “trainingmode.”
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Once the feature file is generated it must be edited by the
user by adding the species name and species code number to
each reference insect’s set of features. This allows the clas-
sifier to assign the species name or classification associated
with the feature set that best matches the features of the
unknown. To edit the feature file, the user opens the file with
any text-editing program, Microsoft Notebook for example,
and types two lines before each set of features (there is ablank
line between each feature set). The first line must contain the
name of the species as a character string. The second line is a
number to represent the species.

Additional functions are necessary to generate a prototype
silhouette file if the user plans on using the second-level
classifier, syntactic-silhouette matching, in addition to the
statistical-feature classifier. First the user takes one of two
intermediate output images to create a silhouette file of the
reference specimens. These two intermediate images were
generated when BugClassity made the reference feature file.
The intermediate images are: an image of the segmented
detections (binary image where the background is black and
the pixels of the detected objects are white) called, Segment-
edlmg.bmp, or a labeled image of the detections (image
where the background is black or zero in value and the pixels
of'each detected object are assigned a positive value unique to
each detection), called Labellmg.bmp. Either of these two
files is input for a command called MakeSilh.exe. The user
types the following command line in a DOS window to gen-
erate the silhouette image:

MakeSilh Labellmg SilhouettelmageName
or

MakeSilh SegmentedImg SilhouettelmageName

The second argument for MakeSilh.exe is the output sil-
houette file and it is shown in italics above to indicate that the
user chooses the name of this file. The next function takes the
silhouette image of the reference specimens and generates a
chain-code representation of each of the silhouettes. This is
done by entering the following command line in a DOS shell:

GetSilhCode SilhouettelmageName SilhouetteFilename.

The first argument to GetSilhCode is the name of the sil-
houette image that was generated by MakeSilh and the second
argument is the name the user chooses for the prototype
silhouette-chain-code file. The chain-code file is manually
edited next. The species code number is added as a line before
each of the chain codes. Also the color reference points must
be appended to each chain code. First the user appends the
number of reference points followed by information on each
of the color reference pixels. For each pixel, its x and y
coordinates are entered, its hue, and its saturation value. A
space is typed between each value. In some embodiments, the
reference points are selected and their x and y position and
their RGB values obtained by viewing the reference speci-
mens in the original raw image with Adobe’s Photoshop
Version 7.0. Photoshop provides the x and y value and the
RGB values of each pixel pointed to by the cursor. The RGB
values are manually converted to hue and saturation values by
the equations given in Section D, Arthropod detection (be-
low).

When the software is executed to detect, classify and count
arthropods, this reference feature file and the optional proto-
type silhouette-chain-code file are included as input to the
software along with the raw images.

C. Acquisition of Images of the Unknown Arthropods to be
Detected

The scanner or camera acquires one or more images of the
arthropods to be detected and classified on the detection sur-
face 624.
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D. Arthropod Detection

This function involves labeling those pixels from the
acquired arthropod images that appear different from the
corresponding pixels of the background image and are thus
likely to belong to an arthropod or clutter. The system looks
for differences in luminance, hue and color saturation
between the corresponding pixels. Where a pixel is moder-
ately darker than the background the pixel may represent a
shadow and it is not labeled as part of an object unless there
are other indications that it is an object and not a shadow, such
as a change in hue. The labeled pixels are then connected into
continuous regions or blobs by a standard image-processing
technique, connected-components analysis (such as
described by Ballard and Brown, 1982). As part of connected-
component analysis, labeled regions that are too small in area
are discarded. This function removes much of the false detec-
tions associated with noise and other artifacts.

The background image and the image with the unknown
arthropods are collected normally in a bitmap format where
each pixel has 8-bit values for the R, G and B color compo-
nents. The RGB components are transformed to create sepa-
rate intensity, hue and saturation images by first transforming
them to the three components of the YCbCr color model. The
equations for these transformations are as follows:

Y=0.299R+0.587G+0.1148
Cr=0.701R-0.587G+0.1148

Cb=-0.299R-0.587G+0.8868

whereY is the luminance or intensity of the pixel and Cr and
Cb are color components of the YCbCr color model. Hue and
saturation are then derived from Cr and Cb by the following
formulas:

Saturation=square root (Cr?+Ch?)

Hue=arc tan(C#/Cb)

In some embodiments, hue is not defined when the satura-
tion level is zero. Zero saturation means there is no color
information and that the color appears as a grayscale value
which can range from black to white.

Once intensity, hue and saturation images have been cal-
culated for the current and previous images, a difference
image can be generated for each image type. The previous
image’s luminosity values are subtracted from those of the
current image to generate an absolute intensity difference
image. The same procedure is applied to the hue and color
saturation images.

A threshold is applied to each of these three difference
images. Differences greater than the threshold are labeled as
significant and may be part of an arthropod, while those pixels
with values less than or equal to the threshold are labeled as
background pixels. This process of separating the back-
ground pixels from the objects to be detected is referred to as
segmentation.

The threshold applied to each of the three difference image
types is not a fixed value. It is adaptively calculated for each
image type. A histogram is created for each difference image
and from it a default threshold is calculated by assigning the
threshold to the difference value where only a small percent-
age of the pixels exceed this value. Setting the default thresh-
old to the value where 15 percent of the pixels exceed the
threshold generally works well. Next, an attempt is made to
improve upon the default threshold by searching the histo-
gram for a better threshold. An inflection point is sought
where the value in the histogram bin levels off or increases
after having declined over the previous bins. The first function
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is to start at the zero-difference bin, and search for the peak in
frequency by examining the bins of larger difference. From
the peak difference, difference values in larger-numbered
bins are then searched for an inflection point or until an empty
bin is encountered. This inflection point becomes the thresh-
old unless it is considerably larger than the default threshold,
in which case the threshold is assigned the default value.

A final detection or segmentation image is created by com-
bining the results of the three thresholded difference images.
A logical-OR operation is performed, of the three binary
difference images, except where the intensity difference indi-
cates the pixel could belong to a shadow, i.e., when the current
pixel-intensity value is somewhat darker than the intensity of
the background or previous image. When the intensity differ-
ence falls within the range of values that are characteristic of
a shadow, the software labels the pixel as shadowed back-
ground unless the hue has significantly changed or the satu-
ration of color has significantly increased. In the latter case,
the pixel is assigned to the detected object.

Arthropod detection need not be limited to just the process-
ing of color imagery. While color images offer more infor-
mation for detecting and recognizing arthropods, a black-
and-white camera is cheaper and thus may be preferable for
situations where it is known the arthropods will be easy to
detect and classify. Detection for black-and-white imagery
would be the same as described above but the algorithms
would be utilizing only the luminosity or intensity image
component and not the hue and saturation images.

Following segmentation or the labeling of individual pix-
els, the labeled pixels must be grouped into regions, objects or
blobs that correspond to the arthropods. This can be done by
the standard connected-components algorithm. The algo-
rithm scans pixels from the top row moving from left to right
across each pixel row until it encounters the pixel at the
right-most column of the bottom row. The input to the algo-
rithm is the binary segmented image described in the previous
paragraphs. The output will be grouped pixels where each
grouped non-background region is labeled with its own
unique non-zero identifying number while the background
pixels are set to be zero. This output image is referred to as the
labeled image.

As the algorithm scans through the segmented image it
stops at each non-background pixel of the segmented image
and assigns the corresponding pixel of the output label image
anon-zero number. If the pixel does not have a labeled neigh-
bor directly above it or to its left the count of the number of
labeled regions is incremented by one and this value is
assigned as the label number for this new region. If the seg-
mented pixel has a labeled neighbor above it, the algorithm
assigns the region label number of that neighbor as they are
both members of the same continuous region. If the neighbor
above the segmented pixel doesn’t belong to a region but the
neighbor to the left belongs to a labeled region, the pixel is
assigned the label number of its left neighbor, as they are
connected to the same blob. If both the upper and left neigh-
bor have a label number but they are different, the pixel is
given the upper pixel’s label number, as it has precedence,
and a record is kept that these two labeled regions are con-
nected and thus equivalent. During a second pass of the output
image these two equivalent regions will be merged.

After scanning through the segmentation image and
assigning numbers to all the labeled regions a second pass is
made through the output image. Wherever a non-zero label
value is encountered that is equivalent to a previously labeled
region it is changed to the previous region’s value. The count
of the total number of labeled regions must also be adjusted
by subtracting out the redundant or equivalent region.
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While scanning the labeled image during the second pass a
count is kept of the total number of pixels in each labeled
region. Once this is done any regions can be removed that are
deemed to be too small by setting their pixel values in the
labeled output image to zero and decrementing the region
count by one. The minimum pixel area for a labeled region
can be altered by the user, depending on the size of the
arthropods of interest.

In some embodiments, the present invention implements
the case of “four connectivity.” Four connectivity defines that
apixel is part of a common region if any of the following four
neighbors has also been labeled: the pixel above the pixel of
concern (same column, preceding row); the pixel below the
pixel of concern (same column, next row); the left neighbor
(same row, preceding column); and the right neighbor (same
row, next column). It is also possible to execute connected-
components analysis with “eight connectivity.” In eight con-
nectivity, in addition to lumping non-background pixels with
their neighbor above, below, to the right and to the left, the
algorithm also looks at the neighboring pixels above and to
the left and right, as well as pixels below and to the left and
right (the four diagonal neighbors). Eight connectivity takes
more computational time and may not yield significantly
better results.

Within the labeled regions corresponding to the detected
arthropods there may be holes that the process considered to
belong to the background. Good examples would be the miss-
ing portions of the two detected ladybird beetles which were
caused by glare and are shown in FIG. 8 (image on right).
These holes can be filled in by applying connected compo-
nents an additional time. Prior to executing connected-com-
ponents analysis to label the non-background pixels, con-
nected components can be applied to do just the opposite,
label the background-pixel regions only. Any small back-
ground labeled regions belong to holes within the detected
areas corresponding to the arthropods. These small back-
ground regions can then be used to fill in the segmented image
before the process calls the connected-components region to
label the detected arthropods. This process of filling holes
within the detected regions was not done for the experiments
described in this document. This function was not incorpo-
rated into the software used in these experiments.

In some embodiments, arthropod detection is done by
invoking the software program called BugClassify.exe. From
the computer, the user types the following command in a DOS
shell:

BugClassify input_image_filename input_image_back-

ground_filename input_feature_filename

If the user does not have a background or previous image
and wants the system to estimate one, he or she needs to
change the second argument to the string, “estimateback-
ground”, or the name of the background estimate image to be
created plus the additional argument, “-background”, as was
described in section B. The program by default discards
detections that cover less than 40 pixels in area. If the user
wants to change that value, he or she must add the optional
argument anywhere after the third argument as follows,
“-minsize” N, where N is area the user selects for the mini-
mum detection size.

E. Feature Extraction

The detection image containing the labeled regions created
by connected-components analysis is used to extract statisti-
cal features (size, shape, luminosity and color) and the sil-
houette (optional) for each labeled region. Scanning over
each labeled region the various size and shape features are
counted and calculated and the silhouette’s pattern is
extracted into an encoded form or chain code. The SIZE
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features that are calculated are: a) total area; b) perimeter; c)
the length of'the major axis (body length); d) the length of the
minor axis (body width); and e) the minimum rectangular
area that bounds the labeled area. The SHAPE features
include: a) the ratio of the total area to the minimum bounding
rectangular area (measure of how rectangular the object is); b)
4(pi) times the total area divided by the perimeter square (a
measure of how circular and compact the object is); and c¢)
height to width ratio or major axis to minor axis ratio (a
measure of elongation). Features are also extracted relating to
the quantity and quality of the light that is reflected from the
arthropod’s body. The relative intensity-of-light or LUMI-
NANCE features are: a) the average difference in luminance
between the arthropod’s pixels and the corresponding pixels
of'the background image; and b) the coefficient of variability
in the difference in luminance. In some embodiments, the
quality of light or COLOR reflected by the arthropod is cap-
tured by the 2D hue/color saturation histogram which is con-
sidered as a feature or compound feature (feature vector).

In some embodiments, the first shape feature listed above is
referred to as the rectangular fit feature. It gives an idea ofhow
rectangular in shape an arthropod is. This feature is calculated
by dividing the total area of the object by the minimum sized
rectangle that surrounds or encloses the object (referred to as
the minimum bounding rectangle). For a perfectly rectangu-
lar shape this ratio will be 1.0, and this feature’s value will
become smaller as the object becomes less like a rectangle in
shape.

In some embodiments, the second shape feature listed
above is called the circular fit or compactness feature. It is
also known as the isoperimetric quotient, which is defined as
4(pi) times the total area divided by the square of the perim-
eter (Russ 1995). In some embodiments, this feature is used to
measure how close to a circle and how compact an arthro-
pod’s shape is. This feature is at a maximum value, 1.0, for a
circle, as both the numerator and denominator are equal to
4(pi)*r*. As an object’s shape deviates from a circle the value
of this feature becomes smaller. Since a circle is the most
compact shape, that is, it has the smallest perimeter relative to
its area for an enclosed object, this feature also measures
compactness. Therefore a large feature value indicates a com-
pact object shape while a small value indicates that an object
is not compact, that is, it is flatter or thinner than a shape with
a larger value.

As can be ascertained from FIG. 23, if one approximates a
circle with equal-sided polygons, the circular fit, or compact-
ness, approaches that of a circle as one adds more sides
(triangle, square, hexagon (not shown), and octagon (not
shown) have values of 0.604, 0.785, 0.842 and 0.948, respec-
tively). If one stretches a polygon, it becomes less compact
and appears less like a circle, and the circular fit/compactness
metric naturally decreases.

In some embodiments, to generate the Color Feature, for
each labeled pixel of a region, the software extracts the color
components Cr and Cb (which characterize its color hue and
saturation, see Weeks, 1996). The Cr and Cb values from that
pixel in the corresponding original input image are used in
some embodiments to fill in the 2D hue/saturation color
matrix that is created for each labeled region. In addition to
color information some embodiments also utilize features
that summarize the luminance or gray-level values associated
with the insect’s image, such as the average gray level.

In addition to these features for classification, other statis-
tics for other aspects of image processing are extracted from
the labeled regions. These additional statistical measures
include location features such as the x,y extents of the object
(x and y maximums and minimums) in the image space, the
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X,y position of the object’s center, called the centroid, and the
object’s orientation (angle of major axis with respect to the
x-axis). The minimum and maximum x and y coordinates
describe the rectangular region where the detection is located.
The centroid is the average x and y value of the pixels that
make up the detection’s area. It tells the program and the user
(normally the centroid is listed in the text output) where the
center of the detection is within the image. In some embodi-
ments, an object’s orientation refers to the angle that the
major axis makes with respect to the x-axis. For example the
arthropod’s body may be facing up in the image, 90 degrees,
or facing right parallel to the x-axis, O degrees.

Some embodiments provide a system that is flexible and
can be customized to specific situations where arthropods
need to be classified. Although some embodiments calculate
many prototype features, (see previous section B or first para-
graph of this section), the user may choose to use only a few
for specific classifications. How many and which features are
chosen to be used depends on the application. Generally,
more features are used as more known arthropod species are
added to a proprietary database of known arthropods. The
program BugClassify by default uses four of the 11 features
just described. They are the total area, the circular fitness
feature, the average luminance and the Color Feature. The
user can select all or a subset of these features by including the
optional argument, “~featsel”, on the command line followed
by a list of the numerical codes for each feature. For example,
in some embodiments, “-featsel 1,9,11” tells the program to
use total area, the average luminance and the color feature in
the statistical classifier. The numerical code for the features is
the same as the order in which the features were presented in
the first paragraph of this section.

F. Classification of Arthropods

The features extracted from each of the unknown arthro-
pods (done in function E) on the detection surface 624 are
compared to each of the reference set of features generated by
function B. In some embodiments, each unknown is classified
by the statistical-feature classifier, which is a modified ver-
sion of the single nearest-neighbor algorithm (1NN) (Tou and
Gongzalez, 1974). The unknown is assigned to the class
belonging to the reference whose feature set is closest in the
N dimensional space defined by the N features (best match).
FIG. 46 shows an example of a three-dimensional feature
space with the distribution of some reference specimens and
unknowns in that volume. Some embodiments of the INN
classifier differ from the standard version in the decision it
makes once all the distances to the various reference speci-
mens have been made. Rather than just assign the class of the
nearest reference in feature space like a typical INN classi-
fier, some embodiments of the classifier have options. The
user can specity a threshold(s) which distinguishes good
matches from poorer matches. If the distance in feature space
to the best match is less than the threshold, then it is a good
match and the classifier assigns that reference’s class to the
unknown. Ifthe distance in feature space exceeds this thresh-
old or if the difference in one of the key features is greater than
the threshold for that feature, the classifier considers other
alternatives. If the match is poor, some embodiments reject
the detection as not belonging to any class associated with the
feature sets in the input feature file and assign the unknown to
the class of unidentifiable objects called OTHER, or it can
request further processing with the second-level, syntactic-
silhouette-matching classifier.

BugClassify.exe decides whether the best match from the
1NN classifier is a good or poor match by doing the following.
The user can choose a threshold that limits how different a
feature may be between the unknown and the best matching
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reference specimen. The threshold is expressed as the differ-
ence in the feature values divided by the value of the reference
specimen. If any individual feature exceeds this threshold the
match is considered poor and the unknown is either assigned
to the class OTHER or the decision is passed on to the syn-
tactic-silhouette-matching classifier. The default threshold
requires a difference of 1.0 or greater (difference of 100% or
more) to reject the INN classifier’s decision. The user can
alter this threshold with the optional argument, “-MaxFeat-
Dist F”, where F is a floating point value of zero or greater.
While each individual feature may not indicate a poor match
there can still be a poor match overall. Therefore, some
embodiments include a second threshold for the overall
match in feature space. If the overall Euclidean distance
exceeds a threshold value, the best match is considered poor.
The default value is 0.5, which is equivalent to the features’
having an average difference of 50% or more. The user can
change this threshold by adding the following optional argu-
ment, “-AvgFeatThrs F”, where F is a floating point value that
can be zero or greater. Rather than set a limit on the quality of
the nearest neighbor classifier’s match as a percentage differ-
ence from the best matching reference specimen, some
embodiments replace these threshold metrics with actual con-
fidence levels based on statistical tests. In some embodi-
ments, for each feature a statistical test is conducted to see if
the unknown is a statistical outlier and should not be consid-
ered as a member of the population of the best matching class.
There are several such statistical tests to choose from. Some
embodiments use Grubbs’ test for detecting outliers. Grubbs’
test calculates a ratio called Z, where Z is equal to the differ-
ence between the unknown’s feature value and the mean
value ofthe reference specimens of the class that best matches
the unknown, divided by the standard deviation among the
reference specimens of the best matching class. The mean and
standard deviation has to also include the unknown in it. If Z
exceeds a critical value for a given confidence level, some
embodiments reject the decision of the 1NN classifier. The
user can choose among several confidence levels. The user
can choose a probability of error in rejecting the decision of
the 1NN classifier of 10, 5 and 1%. If each of the features used
by the INN classifier passes the Grubbs’ test some embodi-
ments do an additional multivariate outlier test such as the
Mabhlanobis d-squared test. These statistical outlier tests are
described by Barnett and Lewis (1994). The mean and stan-
dard deviation of each feature for each class will be calculated
at the time of training and will be added to the feature file.

In some embodiments, the user chooses whether to use the
extended silhouette-matching routine when the 1NN classi-
fier finds ambiguity (poor statistical match) by including the
optional argument “-silh” followed by the name of the proto-
type silhouette file on the command line. The extended sil-
houette-matching classifier will increase the accuracy of clas-
sification by either confirming that the 1NN classifier chose
the correct class or it may find: that the correct class is a
different species; the detection is clutter (no portion of the
detected area matches one of the prototype silhouettes
adequately) and report it as the class, OTHER; that the detec-
tion is a case of overlapping specimens and it will classify
each of them; or some combination of the three previous
decisions. Thus, the silhouette/color matching method is use-
ful for classifying detections when the 1NN classifier’s
results suggest there is some uncertainty, perhaps due to
occlusion (bodies of arthropods partially covering each
other), or where parts of arthropods are missing due to dam-
age. EXPERIMENT 2B gives examples of how this process
works (FIGS. 36-37).
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To keep the number of reference specimens in the data base
of prototype feature files to a manageable number while still
retaining most of the information about the distribution of
features for each class, Hart’s condensed nearest-neighbor
algorithm is used (Hart, P. E. 1968. “The condensed nearest
neighbor rule.” IEEE Trans. Inform. Theory. IT-14, pp. 515-
516). Hart’s algorithm can reduce the number of references
without greatly decreasing the accuracy of the classifier.

The detection/classification results can be sent in text form
either to the user’s screen or to a text file. In addition, the
results are graphically displayed using color, for rapid recog-
nition by the user (see FIGS. 28 and 29). This results image is
saved as a file called, ClassifyImg.bmp. Each detected region
is labeled with the color that is associated with the class that
has been assigned to the detection. The colors are chosen in
advance and set inside the program, BugClassify.exe. Species
1 is assigned the color green, species 2 blue, species 3 yellow,
etc. The species of arthropods are assigned to these color
indices when the user edits the feature file and gives each
reference a species classification number. It is this number
that is used to assign the color code. The species number, 0, is
reserved for the class OTHER and OTHER is assigned the
color red.

An Experimental Demonstration of the Concepts

This section demonstrates practical applications of the
inventions. EXPERIMENTS 1 and 2 show that the technol-
ogy can be configured in a version that uses a color scanner,
connected to a host computer, to acquire arthropod images.
This configuration would commonly be used indoors in labo-
ratory and office settings to count insects and/or classify
them. For indoor use a scanner may be preferable to a digital
camera for acquiring arthropod images, since scanners are
generally less expensive than a camera of comparable color
quality and resolution. In addition, a scanner is able to image
a larger area than a camera, which is beneficial for processing
samples containing many arthropods. Furthermore, a scan-
ner, unlike a digital camera system, does not need a supple-
mental light source to insure uniform lighting. A light source
is already incorporated in the scanner, making system inte-
gration much simpler.

These first two EXPERIMENTS were conducted to illus-
trate the usefulness of the technology to a wide variety of
users such as environmental science and biology teachers,
ecologists, entomologists, pest management specialists and
custom inspectors. These professionals can use the technol-
ogy for the following: a) students in an ecology class collect
insects and want to rapidly classify them. The insects are
collected, killed and placed on a scanner in one of the embodi-
ments configured for this application; b) an insect-pest spe-
cialist takes samples of insects in their habitat using sampling
devices such as sweep nets, aspirators or D-Vacs (a vacuum-
ing device), optionally kills, immobilizes or knocks them out
by chemical means, and then deposits the sample on the
surface of the scanner to have them automatically classified
and counted; and ¢) a county agent who classifies arthropods
as a community service or a custom’s agent in charge of
classifying insects in luggage rapidly kills the insect with a kit
provided with the system, and places the unknown specimen
on the scanner surface for classification. The system would
compare the unknown insect against one of the databases of
known prototype insects.

Some embodiments are designed to be highly customized
for specific applications. For example, in the case that an
embodiment is for a customs facility, the system would be
configured in such a way that the user has in the system’s
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database of prototype features and silhouettes, insects of rel-
evant importance to the concerns of that particular customs
office.

In another embodiment, when logged on to a host personal
computer (PC), the user places insects or other arthropods on
the scanning surface, acquires images of those specimens and
stores them on the host computer. The user employs an
embodiment of the invention’s software on the host PC to
detect, classify and count the arthropods that were placed on
the scanner.

EXPERIMENT 3 demonstrated an alternative approach to
collecting and processing images of insects and arthropods.
Rather than obtaining insect images by placing them on the
surface of a scanner, a digital color camera is placed near and
with a view of the arthropod-collecting or -detection surface.
The portability and small size of a camera as opposed to a
computer scanner is appropriate for field conditions, espe-
cially as part of automatic sampling devices. A digital camera
is also preferred for the hardware portion of the system when
magnification via a lens is needed. EXPERIMENT 3 shows
that a camera-based system can automatically detect, classify
and count insects that have been caught on or in traps in the
field, or after being collected have been placed on another
type of detection surface.

Experiment 1: Equipment Setup. See FIG. 6.

1.—An Epson Perfection 1200U scanner communicated
with a Macintosh Power Mac G4 (Mac OS X Version 1.5
operating system) via a Universal Serial Bus (USB) connec-
tion. The scanner used the TWAIN 5 software. This software
allows the user to collect images and adjust image quality.
The TWAIN software initially shows a preview image of the
entire scanning surface. A portion or subwindow was then
selected that included all of the insects/arthropods, before the
final full-resolution image was requested. The resulting
images were saved to a bitmap format file for further process-
ing. The scanner has an imaging surface that is 21.6 by 27.9
centimeters in area (84 by 11 inches) and can collect images
of resolutions ranging from 50 to 9,600 dpi. The scanner can
save the color as 24 or 48 bit information. A spatial resolution
of 96 dpi and 24-bit color were used. To avoid crushing the
insects on the scanner’s glass surface with the scanner’s cover
or lid, a white cardboard box was used as a cover and back-
ground. The box was 19 cm wide, 28 cm long, and 5.1 cm high
(7¥2x11x2 inches).

2.—Adobe Photoshop 7.0 software on the Macintosh was
used to collect the images of insects placed on the scanner’s
surface. Adobe Photoshop handed off control for an image
collection request to Epson’s TWAIN 5 software.

3.—The image files were transferred to a Dell Dimension
XPS T550 PC (Intel Pentium III processor) over the internet
by attaching each image file to an email message. The image-
processing software was executed on this Dell PC. The Dell
utilized the second edition of the Microsoft Windows 98
operating system. Two different computers were used
because in the particular embodiment employed in EXPERI-
MENT 1 the image-processing software only ran on a PC
using a DOS shell of any of the Microsoft Windows operating
systems, but the scanner was connected to and set up for a
Macintosh computer. In many embodiments, the system
would be configured in a manner that the scanner and pro-
cessing software would all be hosted by just one computer.

Description of the Experiment and its Results—

For clarity, the same sequence of functions described above
in the section, GENERAL DESCRIPTION OF THE
OPERATION OF THE SYSTEM, is used here to describe
how this configuration of the technology worked for this
experiment. The system was configured to simulate a situa-
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tion where it is used to classify insects that are collected in a
habitat of particular interest. For example, an ecology instruc-
tor wants to use the system to assess the abundance of certain
insects in a horticultural garden at various intervals. Thus,
insects from an urban Minneapolis, Minn. garden were used
to simulate this example.

A. Generation of a Background Image

Normally when the system is used, the first function is to
collect a background image, that is, an image of the detection
surface 624 prior to placing insects on the surface. However,
for applications like this, some embodiments do not need to
generate a background image. This experiment demonstrated
that the software does not require a background image as
input. In some embodiments, the system can estimate the
appearance of the detection surface without insects from the
background of the image with insects. Each pixel of the
estimated background used the median pixel values for the
color components R, G, and B, from the test image. See
explanation in “General Description of Operation of the Sys-
tem”, function A.

B. Generation of Identifying Reference Features from
Known Arthropods—

In this function features were extracted from a set of
images containing identified and representative insects col-
lected in the garden. Eleven training or reference insects were
used, which included 6 species:

1)two individuals of'a species of syrphid fly that has yellow
stripes on its thorax (Diptera: Syrphidae);

2) two asparagus beetles, Crioceris asparagi (Linne) (Co-
leoptera: Chrysomelidae);

3) one individual of a second syrphid fly species with no
stripes on its thorax. It appears to mimic a honey bee
(Diptera: Syrphidae);

4) three halictid bees (Hymenoptera: Halictidae);

5) one blow fly (Diptera: Calliphoridae);

6) two multicolored Asiatic ladybird beetles, Harmonia
axyridis Pallas.

The features were generated by executing the detection and
classification software, called BugClassify.exe, in what is
referred to as the “training mode,” with the image of the
known prototypes or reference insects as input. In the “train-
ing mode” the software executes in exactly the same manner
as in the “detection/classification mode” until the last func-
tion, classification. Instead of trying to classify the insects, in
the “training mode” the software saves the feature set associ-
ated with each known insect to a file called the feature file
(Identifying Reference Feature file). Once this file is gener-
ated it must be edited by the user by adding the species name
and species code number to each reference insect’s set of
features. A code number of the prototype’s aspect or orienta-
tion is also added. This allows the classifier to assign the
species name or identity associated with the feature set that
best matches the features of the unknown.

In some embodiments, the present invention is successful
even at distinguishing different color forms of a single species
of ladybird beetle, the multicolored Asiatic ladybird beetle.

The scanning system was used to acquire two images con-
taining reference specimens of garden insects. These two
pictures contained the same 11 individuals. In one image the
insects were placed with a view of their dorsal surface while
in the other they were oriented with a view of their ventral
surface. In a few cases the insect’s legs or wings interfered
with getting a true dorsal or ventral view. In such cases, these
insects had a portion of their lateral side also in view.

The two training images were collected on the Macintosh
via Adobe Photoshop. In Photoshop’s main window the File
menu was clicked with the mouse and Import Epson Scanner
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Enable was selected. This brought up Epson’s TWAIN 5
software which does an initial pre-scan. A subwindow was
selected for the final image, color photograph was selected for
the image type, 96 dpi was selected and then Scan was
clicked. After each image was captured and displayed, Save
As was clicked, the name of the file was entered and then the
Save button was hit.
The two images were saved as two files, ScanDorsalTrain.
bmp (FIG. 25) and ScanVentralTrain.bmp (FIG. 26). Bug-
Classify.exe was executed with each of these images as input
to generate a reference feature file. The functions were as
follows:
BugClassify ScanDorsalTrain estimatebackground Scan-
DTrain -train

and

BugClassify ScanVentral Train estimatebackground Scan-
VTrain -train

The two resulting feature files, ScanDTrain.txt and Scan-
VTrain.txt, were merged into one file, ScanTrain.txt, in the
text editor, CodeWright, and the species identification for
each feature set was also added in CodeWright.

Although the software BugClassify.exe calculated all the
statistical features mentioned in Section E of the previous
section, “General Description of the Operation of the Sys-
tem,” only seven of the features are chosen, in this embodi-
ment, to be saved for identification to the file, ScanTrain.txt.
The seven features were:

Size-Related Features:

1) total area;

2) perimeter;
Shape-Related Features:

3) Circular fit or compactness feature—sometimes referred
to as the isoperimetric quotient, defined as 4(pi) times the
total area divided by the square of the perimeter (Russ 1995).
This feature is used to measure how close to a circle and how
compact an arthropod’s shape is.

4). Rectangular fit feature—this feature calculates how
close an insect is to a rectangle in shape.

Luminance Features:

5) Average Intensity Difference—the average of the difter-
ence in intensity between the object and its background. As
long as the lighting is controlled, keeping it nearly constant,
this feature provides information about the relative amount of
light that the object reflects.

6) Coefficient of Variability in Intensity Difference—the
relative amount that the intensity difference varies over the
object. This feature is calculated by dividing the standard
deviation in the intensity difference (difference between
object and background) by the mean intensity difference.
Color Feature:

7) Color feature matrix—the 2D hue/saturation color his-
togram that was developed and which provides a simple and
practical way to summarize the color of an arthropod or insect
that is independent of scale and rotation in the image.

Prototype silhouettes were not extracted for this experi-
ment, to show that the nearest-neighbor classifier works well
on its own without the extended silhouette-matching method
(See Section B in “General Description of the Operation of
the System” for a complete listing of this embodiment’s capa-
bilities).

With the feature file, ScanTrain.txt, the system was then
configured to identify unknown insects. The feature file con-
tained the feature set from the 22 insect images shown in FI1G.
25 and FIG. 26. The 22 insect images were actually a dorsal
and ventral view of 11 individual insects representing 6 spe-
cies.
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C. Acquisition of Images of the Unknown Arthropods to be
Detected

Two pictures were collected to test the ability of the equip-
ment, process and software to detect and recognize various
insects. These images simulate the actual use of the scanner-
based system for detecting, identifying and counting insects.
Each image used 10 insects that had not been used to train the
system. The 10 insects included: 1) two syrphid flies of a
species with a striped thorax; 2) one syrphid fly of the species
without a striped thorax; 3) two halictid bees; 4) one blow fly;
5) two Asiatic ladybird beetles; and 6) two asparagus beetles.

The two pictures (FIG. 27A and FIG. 27B) were taken of
the same 10 individual insects. The insects were first placed
with their dorsal side down on the surface of the scanner. An
image was captured and saved as a computer file, ScanDor-
salTest.bmp (FIG. 27A). The next function was to place the
same insects with their ventral side on the scanner’s surface.
They were scanned and this second image was saved as a
computer file, ScanVentralTest.bmp (FIG. 27B). The insects
in each image were placed at various angles of rotation in the
2D image space to show that the system is insensitive to
rotation.

D.-F. Arthropod Detection, Feature Extraction, Classifica-
tion

In this function the system labeled each pixel from the test
images of the insects to be identified (FIG. 27A and FIG. 27B)
that appeared different from their corresponding background
images, and thus were likely to belong to an insect or clutter.
The labeled pixels were then connected into continuous
regions or blobs by connected-components analysis. Regions
that were too small in area were discarded. Features were
extracted from each detection (i.e., each detected object) and
these features were then compared with the feature set of each
known or reference insect via the single-nearest-neighbor
classifier. Although the feature file contained the values for
the seven previously described features, the classifier was
instructed to use just four of the features: area, circular fit,
average difference in gray level or luminance and the inven-
tion’s color feature.

The first test image, ScanDorsalTest.bmp (FIG. 27A and
FIG. 28A) was analyzed by running the executable software,
BugClassify.exe, with this image and the feature file, ScanT-
rain.txt (generated in function B), as input. FIG. 28B has the
output image from that process. All 10 insects were detected
with no false detects. Each of the test insects matched well
with a reference of the correct species so it was not necessary
to assign any of them to the unknown class, OTHER. Bug-
Classify.exe output to the computer screen a summary of the
numbers counted for each species, but that is not shown here.
The detected or labeled pixels associated with each of the
detected insects were replaced in the output image with the
color code for the species class that was assigned by the
classifier. Non-detected pixels in this output image were
assigned the same values as they had in the input image. The
color code is as follows:

GREEN=yellow striped thorax syrphid fly;

BLUE=orange non-striped thorax syrphid fly;

YELLOW=asparagus beetle;

ORANGE OR BROWNISH RED=halictid bees;

LIGHT BLUE GREEN=blowfly;

PURPLE=Multicolored Asiatic Ladybird beetle.

RED=OTHER

Here is a brief explanation of how the system identified the
unknown insects. The classifier in the software calculated the
percentage difference in each feature with respect to the pro-
totype’s value. Thus, the percentage difference was calcu-
lated between the unknown and known for area, shape, and
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luminosity, as well as the percentage difference in overlap of
the two color matrices. The classifier then used each of these
“normalized” features (feature is scaled by its expected value,
which is the reference specimen’s value) to generate an over-
all goodness-of-fit measure. This goodness-of-fit measure is a
Euclidean distance metric, the square root of the sum of the
squares of the percentage difference in each feature. The
unknown was assigned to the class of the prototype with the
smallest or closest value for this Euclidean distance. If, how-
ever, the best match differed by more than 40% in area, or if
the contents of the two 2D hue/saturation histograms over-
lapped by less than 68%, or the average gray-level difference
was off by more than 12%, or the overall Euclidean metric
differed by more than 1.0 (fraction rather than a percentage),
the conclusion was that the match was not good and that the
object must be something that had not been presented to the
classifier during training (a species or object not represented
among the prototypes of the feature file). In this case, the
unknown was assigned to a class called OTHER. These
thresholds were empirically arrived at by prior testing with
several sets of other types of insects and additional images of
the same types of insects used in this experiment. Note that a
poor match can also indicate that there is more than one
arthropod and that one is occluding the other or that the
individual arthropod may be damaged or unusual in some
other way. These possibilities were addressed in EXPERI-
MENT 2B.

The processing of the second test image (FIG. 27B and
FIG. 29A) also produced correct results (FIG. 29B). All the
insects were detected and correctly identified without any
false alarms. The inputs to this test were the input file, Scan-
VentralTest.bmp (FIG. 27B and FIG. 29A) and the reference
file ScanTrain.txt. Note that for both test images shadows,
particularly those associated with the larger flies, did not
cause any problems. They were not detected or segmented
along with the insect. The image-processing algorithm is able
to recognize shadows and thus avoids labeling shadow pixels
as being significant from the background.

To summarize EXPERIMENT 1, the validity and practi-
cality of the invention’s concepts were demonstrated. It was
shown that the invention is able to detect insects within an
image and avoid detecting shadows or including them with
the labeled area of the insect. It was shown that it is possible
to generate distinguishing features to recognize insects. [t was
also demonstrated, that the orientation of the insect or arthro-
pod is not critical to its identification, provided that there is a
distinct set of features associated with each position and that
the insect and its position are represented among the proto-
types of the feature file. Finally, it was also shown that by
using the invention’s image-processing algorithms, a color
computer scanner and a computer system, it is possible to
automate the detection and classification of insects.

EXPERIMENT 2A. This experiment builds upon what
was done in EXPERIMENT 1 and was performed to prove
that the nearest-neighbor classifier is able to distinguish
between the insects it has been trained to recognize and vari-
ous forms of clutter that could be present in some applica-
tions. For example, if the user placed insects along with plant
parts on the scanning surface. This could happen if an
embodiment of the system is used by a person who is sam-
pling insects on vegetation with a sweep net. The sampler
sweeps the net over vegetation that may harbor insects, trans-
fers the collected material that includes insects and plant parts
to a device to kill the insects and then places the collected
material on the scanning surface of the system. In addition, it
was shown that the feature set and 1NN classifier are robust,
since they can often identify incomplete arthropods, i.e.,
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insects or arthropods with parts of their body missing from the
damage caused by handling them after some of them had
become dry and brittle.

Equipment setup. FIG. 6. Same setup as in EXPERIMENT
1.

1.—An Epson Perfection 1200U scanner connected to a

Macintosh Power Mac G4 via a USB cable, to collect the
test image.
2.—FEpson’s TWAIN 5 software via Adobe’s Photoshop
7.0 was used to set the scanner’s resolution to 96 dpi with
24-bit color resolution and to request an image.

3.—The collected images were processed with the image-
processing software on a Dell personal computer with an
Intel Pentium III processor running the Microsoft Win-
dows 98 operating system.

Description of the Experiment and its Results—

The same sequence of functions described above in the
section, GENERAL DESCRIPTION OF THE OPERATION
OF THE SYSTEM, is used here to describe how the system
identified and counted several insects that were mixed with
plant material (clutter). This was done to show that the system
can reject objects that are not the arthropods that the classifier
has been trained to recognize. The contents of a sampling
tool, such as an insect net, may deposit vegetation and other
debris on the detection surface besides arthropods. The
insects were collected from vegetation in a Minneapolis gar-
den.

A. Generation of a Background Image

As in EXPERIMENT 1, a background image of the scan-
ner’s surface was not collected before the insects were placed
on it. The system estimated a background (see explanation in
Section A of EXPERIMENT 1) from the test image.

B. Generation of Identifying Reference Features from
Known Arthropods

Since this experiment worked with the same insect species
imaged under the same scanner conditions as in EXPERI-
MENT 1, the system was already configured for this situation.
The computer contained the feature file that was generated for
EXPERIMENT 1. This file contained the following seven
features for each reference specimen: 1) area; 2) perimeter; 3)
circular or compactness shape feature; 4) rectangular shape
feature; 5) average difference in luminosity between the
insect and the background; 6) the relative variance in the
average intensity difference; and 7) the color feature or 2D
hue/saturation color histogram. This feature file contained the
feature sets of the 22 insect images shown in FIGS. 25 and 26.
The images were dorsal and ventral views of 11 individual
insects representing 6 species. Prototype silhouettes were not
generated for this experiment, to demonstrate that the INN
classifier can recognize and reject clutter.

C. Acquisition of Images of the Unknown Arthropods to be
Detected

The next function in this demonstration was the simulation
of'placing a mixture of insects and plant parts on the scanning
surface. Seven insects mixed with plant material were
dropped on the scanner’s surface so they would appear in
various natural and “random” orientations which might be
typical of emptying insects from a sampling device. The
seven insects included: one striped-thorax syrphid fly, one
blow fly, two Asiatic ladybird beetles, and two asparagus
beetles. The plant material or clutter that was placed on the
scanner surface included: 1) one sugar maple seed (Acer
saccharum Marsh); 2) one Amur maple seed (Acer ginnala
Maxim); 3) one green ash seed (Fraxinus pemnsylvanica
Marsh); 4) a shoot of Korean boxwood (Buxus harlandii
Hance); and 5) two fragments of bluegrass (Poa pratensis L.).
As an additional challenge for the system’s ability to identify
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arthropods, two of the insects in this test case were signifi-
cantly damaged. The syrphid fly (top of FIG. 30A) was miss-
ing its abdomen and the asparagus beetle (bottom of FIG.
30A) had no head and thorax. In a real world application,
damaged specimens might be expected even though precau-
tions should be taken in the handling of the arthropods to
increase the accuracy of the system.

An image was acquired (FIG. 30A) and saved as a file, as
was described in EXPERIMENT 1, Section B. This image
was saved as a file called ScanClutterS.bmp.

D.-F. Arthropod Detection, Feature Extraction, Classifica-
tion

As indicated for EXPERIMENT 1, this function involves:
1) labeling each pixel from the test image that appeared
different from the corresponding background image and thus
is likely to belong to an insect or clutter; 2) connecting the
labeled pixels into continuous regions or detections; 3)
extracting features from the detections; and 4) classifying the
detections by comparing their features with those of the
known insects in the input feature file. As in EXPERIMENT
1, the classifier was set to use only four of the seven features
in the feature file: area, circular fit, average difference in gray
level or luminosity and the 2D hue/saturation color histo-
gram. Each unknown or detection was assigned to the class of
the prototype with the shortest Euclidean distance in the four
dimensional (four features) feature space. However, if this
distance was greater than 1 (fraction, same as 100% difter-
ence), or if the difference in area between the unknown and
best match was greater than 40%, or if the average gray-level
difference between the two was more than 12%, or if the two
2D color histograms overlapped by less than 68%, it was
concluded that a good match was not present. Thus for a poor
match, the object was assumed to be something that had not
been presented to the classifier during training. In this case the
unknown was placed in the undetermined class, OTHER.

The software program, BugClassify.exe, was executed
with ScanClutter5.bmp (image of FIG. 30A) and the feature
file, ScanTrain.txt as input. The following command was
used:

BugClassify ScanClutter5 estimatebackground ScanTrain.

The output result image that was obtained appears on FIG.
30B. BugClassify.exe also sent a listing to the computer
screen of the classification results for each object that was
detected and listed a summary of the numbers detected for
each class. The class assigned to each detection was colored
coded in the output image as in EXPERIMENT 1:

GREEN=yellow striped thorax syrphid fly;

BLUE=orange non-striped thorax syrphid fly;

YELLOW=asparagus beetle;

ORANGE OR BROWNISH RED=halictid bees;

LIGHT BLUE GREEN=blowfly;

PURPLE=Multicolored Asiatic Ladybird beetle.

RED=OTHER

The seven insects detected and correctly identified
included the syrphid fly and asparagus beetle that were miss-
ing a significant portion of their bodies (FIG. 30B). This
illustrates how robust the nearest-neighbor classifier is
because it uses a set of complementary features. Missing an
abdomen or head may produce a misleading size or shape
feature, but the color and luminance features may still be
adequate for good classification. The six pieces of plant parts
were detected but rejected as not being relevant to the sam-
pling goals. They were labeled as red in the output image and
as OTHER in the text output’s summary. While the grass and
ash seed were each detected as one uniform region, the box-
wood foliage and maple seeds were each detected as separate
multiple regions, but all of these regions were rejected as
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clutter. Note that in this test case (FIG. 30A and FIG. 30B), as
in the previous experiment, the shadows in the images did not
cause any problems. As may have been noticed based on the
name of this test image, ScanClutterS.bmp, there were four
other similar images, each with different insects and arrange-
ments of plant parts. The four other test cases were com-
pletely successful at detecting and identify insects as well as
rejecting plant material. The case for ScanClutterS.bmp was
included here as it was the most complicated of this test series.

EXPERIMENT 2A provides another demonstration of the
validity and practicality of the concepts of some embodi-
ments. Some embodiments are able to detect insects within an
image. With the statistical features that the software extracts
and the nearest-neighbor classifier that uses these features,
insects are recognized that are included in the training/feature
file. Objects that were not intended to be detected and
counted—clutter—were appropriately assigned to a class
called OTHER or unknown. It was again demonstrated that
both the detection and classification of arthropods can be
automated.

EXPERIMENT 2B. This experiment demonstrated the
versatility and strength of the systems to identify insects even
when they overlap (occlusion). Dealing with occlusion can be
important. While a user who places his arthropods on a scan-
ner for counting and identification always has the option of
making sure the insects don’t overlap or touch one another in
order to insure greater accuracy (as in EXPERIMENT 1
here), this will not always be possible. It will not be possible
to prevent occlusions when embodiments of the systems are
configured to include unattended insect-monitoring devices
in the field, such as sticky traps. In this situation, a sticky
surface, where insects are trapped, will be scanned by an
imaging device and the resulting images analyzed. As insects
accumulate over time they will overlap (occlusion). The dem-
onstration here illustrates that the software has two ways to
deal with overlap in arthropod specimens: 1) subtracting from
the occlusion arthropods that were previously detected in
earlier image collections. This approach assumes that the
system is configured to trap and monitor insects periodically
over time, so that the earlier of the overlapped insects are
known and can be subtracted out along with the background;
or 2) using the higher-level extended silhouette-matching
classifier in conjunction with the lower-level nearest-neigh-
bor classifier to solve the ambiguity. For more information on
silhouettes see Section B. This experiment demonstrated that
the nearest-neighbor classifier that is utilized is robust and can
recognize complex situations like occlusion or difficult clut-
ter, and request that the extended silhouette-matching method
confirm its identifications or have the silhouette matching do
further analysis on difficult cases.

The same sequence of functions described above in the
section, GENERAL DESCRIPTION OF THE OPERATION
OF THE SYSTEM, which was previously used in describing
EXPERIMENTS 1 and 2A, is also used here to describe how
the system detected and identified occluded insects:

A. Generation of a Background Image

Abackground image of the scanner’s surface was collected
with insects but before additional insects were placed on it.
This was done to show the advantage of using a previous
image as a background image in the case of occlusions rather
than estimating the background as was done in EXPERI-
MENTS 1 and 2A. The events were simulated that would
occur if an embodiment of the system was configured as a
monitoring device that collected images at periodic intervals.
First an image that was collected at an initial period was
simulated. For this a background image was collected of the
scanner’s surface with insects and clutter (plant material), by
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placing two insects and a plant seed on the scanning surface.
This image was saved as the file, Occl A.bmp (FIG. 31).

B. Generation of Identifying Reference Features from
Known Arthropods

For this experiment it was not necessary to generate a
reference feature file because this was done in EXPERI-
MENT 1. Thus, the feature file was used, ScanTrain.txt, gen-
erated by that experiment as input for this test. For this appli-
cation, the system’s silhouette-matching capabilities also
were used. Therefore, prototype silhouettes had to be gener-
ated. The prototype silhouettes were extracted from among
the reference insects in the training image, ScanDorsalTrain.
bmp (FIG. 26A), of EXPERIMENT 1. The silhouette from
one individual of each of the six insect species was used. The
silhouettes were taken from the following insects of ScanDor-
sal Train.bmp:

1) the syrphid fly with the striped thorax was represented

by the silhouette of the top left-most insect;

2) the asparagus beetle’s silhouette was from the right-

most asparagus beetle of the second row;

3) the syrphid fly without a stripe was the right-most insect

of the second row;

4) the right-most halictid bee in the third row was used for

a silhouette;

5) the blow fly silhouette was extracted from the blow fly of

the fourth row; and

6) the ladybug silhouette was taken from the right-most

ladybird beetle.

The following process was used to extract the silhouettes.
Since the silhouette-generating and -matching routines were
not completely integrated into this embodiment’s overall pro-
gram, BugClassify.exe, at the time of this test, the silhouettes
were generated by a series of commands. First, the program
BugClassify was executed using the file ScanDorsalTrain.
bmp as input along with the arguments to tell the command to
operate in the training mode. In a DOS shell the following
command was typed:

BugClassify ScanDorsalTrain estimatebackground train-

ingmode

One of the intermediate outputs from this command is the
labeled image, Labellmg.bmp, which contained the labeled
detections. Another command, MakeSilh.exe, was executed
with Labellmg.bmp as input and SilhImg.bmp was the out-
put. The command line in DOS for this function looked like
this:

MakeSilh Labellmg SilhImg

The latter image contained the silhouette images of the
reference insects. Finally, SilhImg.bmp was used as input for
GetSilhCode.exe which used the silhouette images to gener-
ate the prototype silhouettes in a chain-code form which was
saved to a file called ScanSilhouette.sil. The command was as
follows:

GetSilhCode SilhImg ScanSilhouette

This file was hand edited in the text editor, Code Wright, to
append the color reference points to each of the six desired
silhouettes. The extra silhouettes were deleted. The silhou-
ettes are illustrated in FIGS. 32A-32F.

C. Acquisition of Images of the Unknown Arthropods to be
Detected

The next function was the simulation of insects that are
occluded. For overlapping pairs of insects, the following were
placed on the scanner: 1) a pair of asparagus beetles abutting
one another with little or no overlap; 2) a pair of multicolored
Asiatic ladybird beetles were placed side by side with little
overlap; and 3) an ash seed was positioned so that it obscured
at least half the view of a halictid bee (FIG. 33).
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An image of these occluded insects was acquired in the
same manner as described in EXPERIMENT 1, Section B.
The image was saved as a file called Occ2A.bmp. This file
was created to show that in the case of occlusion the nearest-
neighbor classifier can correctly identify members of an
occlusion if the system has information about one of the
members of the occlusion from a previously processed image.
Otherwise it was to be demonstrated that the occlusion prob-
lem can still be solved by the nearest-neighbor classifier’s
calling upon the higher-level classifier, the extended silhou-
ette-matching method.

D.-F. Arthropod Detection, Feature Extraction, Classifica-
tion

The program BugClassify was run with Occ2 A .bmp as the
current image input file, Occl A.bmp as the previous image
input file, and ScanTrain.txt (from EXPERIMENT 1) as the
feature file. The command line appeared in DOS as follows:

BugClassify Occ2A Occl A ScanTrain

All three insects added since the collection of the image
OcclA were detected and correctly identified (FIG. 34). By
taking the difference in the luminance and color between the
two input images, the algorithm detected only the objects that
were new to Occ2A.bmp and had not been in Occl A.bmp.
This left unambiguous detections for the asparagus and lady-
bird beetles. The nearest-neighbor classifier found good
matches for both these detections since the complete insects
were detected. The nearest-neighbor classifier even found the
halictid bee was the best match for the occluded bee in spite
of' the fact that half of it was missing from view. Even though
a halictid bee was the best match for the occluded bee, its
matching score was poor enough to make this identification
uncertain. The nearest-neighbor classifier was able to select
the halictid bee because prior to running this test the set of
features used by the classifier in EXPERIMENTS 1 and 2A
was changed. Three of the four previously used features were
used, area, average relative luminance and the color feature,
but the roundness feature was replaced with the insect’s
width. It was known in advance that the shape of the bee
would be compromised by the occlusion, but not the bee’s
width. Although the best match for the occluded bee was a
halictid bee, it was a poor match with respect to the area, color
and gray-level features. By the criteria or threshold set in
EXPERIMENT 2A for rejecting something as clutter, the
occluded bee was considered as possible clutter and was left
for the silhouette-matching method to clarify. The matching
scores of the beetles, on the other hand, were good enough to
accept without further analysis.

Although integration of the silhouette routines into Bug-
Classify had not been finished at the time of this experiment,
manual simulations demonstrated how the nearest-neighbor
classifier will interact with the invention’s color extended
silhouette-matching classifier, in some embodiments. Since
the nearest-neighbor-classifier matching scores for the
asparagus beetle and ladybird beetle were very good, there
was no need to invoke the silhouette classifier to confirm their
identification. Where the matching metrics of the nearest-
neighbor classifier indicated there was a good match, silhou-
ette matching is optionally omitted in this embodiment, since
it is currently a computationally-intensive and time-consum-
ing method. The following functions were taken to simulate
how the software will process the case ofthe occluded bee. As
described in Section B of this experiment MakeSilh.exe and
GetSilhCode.exe were used to generate a silhouette chain
code file of the halictid bee from the intermediate label image
produced by BugClassify. TransSilh.exe then read in the sil-
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houette code of the occluded bee and the prototype silhou-
ettes in ScanSilhouette sil. The command in the DOS window
appeared as follows:

TransSilh HBeeSilh ScanSilhouette Occ2A

TransSilh placed each prototype silhouette with its center
overlapping the center of the occluded bee’s silhouette. It
then rotated each prototype 360 degrees at one degree incre-
ments. At each increment of rotation it tried shifting the
prototype silhouette by as much as 30 pixels in both directions
of x and y. The best matches were recorded for each of the
prototypes. TransSilh then assigned the occluded bee to the
class of the prototype that had the best match, provided that
enough pixels of the silhouettes overlapped and the pixels for
color sampling agreed with those of the unknown. The halic-
tid bee’s prototype silhouette matched the occluded halictid
bee best (FIGS. 35A-35C). This was considered an accept-
able match, as nearly half the occluded silhouette’s pixels
overlapped those of the prototype and its remaining pixels
were close to those of the prototype and three of the six color
sample pixels matched those of the prototype. If this best
match had accounted for only a portion of the occluded bee’s
area, the methodology would have continued considering the
other good matches for the remaining portions of the detec-
tion, as there could have been another insect that was part of
the detection. In the case of the occluded bee, the bee proto-
type accounted for the entire area of the unknown bee. This
portion of the experiment demonstrates that the extended
silhouette-matching routine can be useful for correcting or
confirming identifications by the nearest-neighbor classifier.
It was also illustrated that having information about previ-
ously trapped insects can aid in solving occlusion problems
simply by subtracting the previous image from the current
one.

One more test was conducted as part of this experiment to
demonstrate that the nearest-neighbor classifier can detect a
matching problem for each of the three occlusions and
request that the extended silhouette-matching routine do fur-
ther analysis. For this, a background image that contained
insects was not used. Thus, in this test the system had no prior
knowledge about one of the members of each occlusion. The
program BugClassify.exe was executed with the image,
Occ2A.bmp (FIG. 33) and the feature file, ScanTrain.txt as
input.

The command appeared in the DOS shell as follows:

BugClassify Occ2A estimatebackground ScanTrain

BugClassify.exe estimated a background from the test
image containing insects (FIG. 33). BugClassify detected all
three sets of occluded insects without any false alarms (FIG.
36). To generate FIG. 36, a version of BugClassify was
executed that outputs a decision image that color codes each
detection with the best match of the nearest-neighbor classi-
fier, regardless of whether the classifier would eventually
reject it as possible clutter. If the normal version of BugClas-
sify had been used, it would have reported all three detections
as OTHER and colored them red. This version of BugClassify
was used to simulate the invention’s approach of having the
nearest-neighbor classifier withhold final judgment and pass
the final decision to the extended silhouette-matching classi-
fier. FIG. 36 shows that the nearest-neighbor classifier found
the best match in statistical-feature space for the pair of
asparagus beetles was a blow fly. This figure also displays that
the pair of ladybird beetles and the ash seed with halictid bee
best matched a syrphid fly. The feature-matching scores for
the best match for each of these three detections were suffi-
ciently poor to suggest that they could represent either clutter
or occlusions. The nearest-neighbor classifier rejected the
best matches as acceptable because the clutter-rejection cri-
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terion that was mentioned in EXPERIMENT 2A was
exceeded in each case. The color feature and gray-level fea-
ture were too dissimilar to have confidence in the best match.
In addition, the area of the ash seed with the bee was far too
large to actually be the best match, a syrphid fly.

The action of the extended silhouette-matching routine
was simulated by executing the following sequence of func-
tions:

As was mentioned in the previous paragraph, the command
BugClassify was executed with the option to estimate the
background. BugClassify in addition to producing the output
image of FI1G. 36 also produces an intermediate results image
called Labellmg.bmp. This is a labeled image of the detected
areas after the connected-components software has grouped
the pixels that appear different from the background, into
contiguous regions. Labellmg.bmp was used as input to the
command, MakeSilh.exe. MakeSilh.exe produced an image
with silhouettes of the unknowns called OccSilh.bmp. The
command line in DOS appeared as follows:

MakeSilh Labellmg OccSilh

The command, GetSilhCode.exe, was then used with
OccSilh.bmp as input to generate a chain-code silhouette file
called TestOccSilh.sil as follows:

GetSilhCode OccSilh TestOccSilh

In the text editor, CodeWright, each of the chain codes for
the three occluded detections was copied to their own silhou-
ette-chain-code files called: TestABSilh.sil, TestLBSilh.sil
and TestHBSilh.sil. These three chain-code files contained
the silhouette chain code for the asparagus beetles, ladybird
beetles and ash seed/bee, respectively. The prototype silhou-
ette file, ScanSilhouette.sil, and the command, TransSilh.exe,
were used with each of the occluded silhouette files to find the
best matches for each occlusion and to simulate the higher-
level classification logic. To do this the following three com-
mands in the DOS shell were run:

TransSilh ScanSilhouette TestABSilh Occ2A

TransSilh ScanSilhouette TestLBSilh Occ2A

TransSilh ScanSilhouette TestHBSilh Occ2A

The extended-silhouette-matching method correctly
detected and identified each of the beetles. For the detection
that included the pair of asparagus beetles, the best match was
for the asparagus beetle on the left (FIG. 37A). This best
match was the prototype of the asparagus beetle. Thus the
beetle on the left was accepted as an asparagus beetle
because: 1) more than half the pixels of the prototype’s sil-
houette overlapped the silhouette of the unknown; 2) the
remaining pixels of the prototype’s silhouette were a short
distance to the unknown’s silhouette; and 3) more than half
the sample pixels for color matched the unknown’s corre-
sponding pixels in color. If more than 40 to 50% of the
prototype’s silhouette overlap the unknown’s silhouette (or
vice versa) and half or more of the color sample pixels agree
with the unknown in color, then it is considered that the match
can be accepted as correct and the class of the prototype can
be assigned to the unknown. The best match in a remaining
portion of the asparagus beetle occlusion was also the proto-
type silhouette of an asparagus beetle (FIG. 37B). This match
was also accepted as a correct identification because nearly
half the pixels of the silhouette prototype overlapped the
occluded area’s silhouette, and most of the color sample
pixels agreed in color with those of the unknown.

The identification process for the ladybird beetles was
similar to that of the asparagus beetles. The best match and
second-best match for the ladybird beetle detection was the
prototype silhouette of the ladybird beetle. The prototype
ladybird silhouette and the ladybird in the lower right pro-
duced the best match (FIG. 37C), while the second-best
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match was between the prototype silhouette of the ladybug
and the silhouette region corresponding to the ladybug in the
upper left (FIG. 37D). Both of these matches were considered
correct identifications since half or more of the prototype’s
silhouette overlapped the silhouette of the unknown and the
color sample pixels agreed in color with the pixels of the
unknown.

The invention’s approach to silhouette and color-pattern
matching found that a halictid bee was the best overall match
for the area around the occluded halictid bee (FIGS. 37E-37F)
while the remaining portion of the occlusion was considered
clutter. However, the matching score was not high enough to
say with certainty that there was a halictid bee there. The
match between the halictid bee prototype and the occluded
bee was the third best in terms of percentage of silhouette
pixel overlap (FIGS. 38A-38C), approximately 21% of the
pixels overlapped the unknown’s silhouette, but it was the
best overall match because half the color sample pixels were
correct. The remaining top silhouette matches (spurious cor-
relations of the halictid bee and asparagus beetle with the ash
seed) were rejected because none of the sample pixels for
color matched the unknown area’s color and the percentage of
the prototype’s pixels that overlapped the unknown silhouette
was also low. Thus, the region associated with the ash seed
was rejected as clutter by the extended silhouette matching.

If the prototype silhouettes had been scaled (made slightly
larger and smaller) in addition to translating (shifting them in
x and y, parallel to the x and y axes) and rotating them when
looking for a better match, a better matching score is obtained
in some embodiments, between the bee prototype and the
occluded bee. This would have made the identification of the
occluded bee more certain. Although some embodiments
only translate and rotate the silhouettes, in other embodi-
ments, it is advantageous to also scale the prototype silhou-
ettes, in order to take into account the natural variation in size
among individuals of a given species. Whether or not the
classifier should count the detected halictid bee depends on
how much uncertainty the user is willing to accept. If the user
is willing to lower the acceptance thresholds to count this
detection as a bee it is possible that the user will get additional
false detections and incorrect identifications on other occa-
sions. One additional point with regard to silhouette matching
based on the occluded bee is that it may be difficult in general
to recognize arthropods with much confidence when half or
more of the specimen is not visible. Clearly, if the insects are
just touching or barely overlapping, the syntactic-silhouette-
matching method can effectively detect and identify the
members of the occlusion. This is also true if the older mem-
ber of the occlusion can be subtracted by using a previous
image as a background input image.

EXPERIMENT 2 demonstrates that not only can some
embodiments of the invention automatically detect and iden-
tify a variety of arthropods at widely differing orientations but
they can also deal with such difficult problems as recognizing
objects that can be considered clutter, detect and count
occluded arthropods and recognize arthropods with missing
structures due to damage or occlusion. It was also shown that
by using the image-processing algorithms, a color computer
scanner and a computer system, it is possible to automate the
detection and classification of insects for teachers, research-
ers, pest-management practitioners, and the employees of
various governmental regulatory agencies and public service
departments (such as the agricultural extension service). This
automated technology reduces the time and cost of sampling,
which will allow research and pest-management personnel to
improve their monitoring of arthropod populations. With
more time and lower costs, they will be able to sample more
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frequently and/or be free to investigate other aspects of the
arthropods that they are studying. This scanning system also
offers public agencies a quick and simple way of identifying
common insects where people trained in taxonomy are not
available or their time is limited. If the individual is attempt-
ing to identify an uncommon species that is not in the classi-
fier’s database, the software can be instructed to indicate that
the best match is not a very good match (just like the method
of clutter rejection) and that the user should consider that the
correct insect may be in another database or that a taxonomic
expert should be consulted since this is likely to be an uncom-
mon or poorly known species or even a previously unknown
species.

EXPERIMENT 3. This experiment further demonstrated
the validity of general concepts of some embodiments of the
invention and their application to a digital camera-based sys-
tem. This configuration is applicable to the use of the tech-
nology of some embodiments in field detection stations,
where the automatic detection, identification and counting of
insect/arthropods captured on or in various types of traps such
as colored sticky boards or baited pheromone traps is pro-
posed. This configuration would include:

a) a sticky surface to which insects are attracted by various
stimuli including color, pheromones, kairomones or pat-
terns; and

b) an imaging device to acquire images of the sticky surface
at various intervals. Processing of the images could be
done in situ or sent by various methods (cable, radio) to
a processing location.

Equipment Setup for Some Embodiments. FIG. 39.

1. A digital video camera (Kodak MDS 100 Color Camera)
with a wide angle C-Mount lens (Computar 8.5 mm fixed
focal length, model M8513, with a 41.0 degree angular field
of view fora %2 inch CCD) was mounted on a tripod. The lens
was fitted with an infrared filter to insure that the elements of
the camera’s charged-coupled device (CCD) were exposed
primarily to visible light. The camera’s lens was 26.04 cm
(10.25 inches) from the surface. With the digital zoom of the
camera set to a magnification of 1.5, the field of view was 7.9
cmby 5.9 cm (3.1x2.3 inches). The lens has manual focus and
iris rings. The resolution of the Kodak MDS is 640x480
pixels.

2. A yellow surface (detection surface 624) (plastic back of
compact disk painted with fluorescent yellow paint ACE
GLO Spray Fluorescent).

3. Two incandescent lights (40 Watts). The height of the lamps
over the surface was 24.1 cm (9.5 inches).

4. A notebook computer (IBM Thinkpad 600) was used to
store image data from the camera. The camera was connected
to the computer via a Universal Serial Bus (USB). The com-
puter was used also to control the camera (shutter speed,
digital zoom, contrast, color balance, hue, saturation and
brightness) and do the processing for the detection and iden-
tification of the arthropods.

Description of the Experiment and its Results—

The same sequence of functions described previously in
the section, GENERAL DESCRIPTION OF THE OPERA-
TION OF THE SYSTEM, and used for EXPERIMENTS 1,
2A and 2B, is also used here. For the purpose of clarity they
are briefly repeated here as applied to this configuration.

A. Generation of a Background Image

An image of the yellow surface, (detection surface 624),
was generated prior to placing any insects to be identified on
it. This image was saved as a computer file, backg0.bmp (FIG.
40). To capture this image the computer mouse of the host
computer was simply clicked on the icon for Kodak’s
MDS100 software package. From the window of this pro-
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gram the mouse was clicked on the “Take Picture” button and
then from the File menu selected the command “Save As.”.

B. Generation of Identifying Reference Features from
Known Arthropods

Features were extracted from known insects, cotton boll
weevils. These features are utilized by the classifier of the
software. The features were generated in a mode that is
referred to as the “training mode” of the system. The detection
and classification software, BugClassify.exe, was executed
on an image of the known prototypes or reference boll wee-
vils. The software is executed exactly in the same manner as
the “detection/classification mode” until the last function,
classification. The software then saves the feature set for each
of the known insects to a file.

The equipment acquired an image of the reference weevils,
called Trainl.bmp (FIG. 41), and used this image along with
the background image, backg0.bmp, to detect the reference
weevils and to generate a feature file (Identifying Reference
Feature file), called Weevil.txt. This file contains the values of
each feature (feature set) extracted from each of the known
boll weevils. This file was then edited to include the species
and aspect/orientation that was associated with each refer-
ence specimen’s feature set. The picture, FIG. 41, contains
seven cotton boll weevils used for training placed on a yellow
surface in various aspects (positions), which were as follows:

1) three on their sides;

2) one on its back;

3) one on its abdomen,;

4) one partially on its side and back; and

5) one sitting on its posterior end.

When the software was run in the “training mode” silhou-
ettes of each reference weevil for classification were option-
ally not generated, since silhouette matching was not neces-
sary for this application. Although all the statistical features
were calculated that were mentioned in Section B of the
earlier section, GENERAL DESCRIPTION ON OPERAT-
ING THE SYSTEM, an option was selected to write only the
four most promising features for identification to the file,
Weevil.txt. The first two features were size related, the third
was a shape feature, and the fourth characterized the colors of
the weevil:

Size-Related Features:

1) total area;

2) perimeter;

Shape-Related Feature:

3) circular fit or compactness feature—this feature was

described in the equivalent section of EXPERIMENT 1.

Color Feature:

4) the 2D hue/saturation color histogram of some embodi-
ments—this feature was also described in the equivalent
section of EXPERIMENT 1.

C. Acquisition of Images of the Unknown Arthropods to be

Detected

To testthe ability of the equipment, process and software to
detect various unknown insects, two pictures were taken.
These images simulated the actual use of the system to detect
and identify insects on a surface. For the first of these pictures
three weevils were placed on the yellow surface (FIG. 42).
This picture was saved as an electronic file called, wst0.bmp.
A second test image was taken (FIG. 43) that included the
previous three weevils plus two more weevils and a cantharid
beetle. This was stored as a file called, wst1.bmp.

D.-F. Arthropod Detection, Feature Extraction, Classifica-
tion

This function involved labeling those pixels from the wee-
vil images that appeared different from the background image
and thus were likely to belong to a weevil or clutter. The
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labeled pixels were then connected into continuous regions or
blobs by connected-components analysis. Regions that were
too small in area were discarded. Features were then extracted
and compared with feature sets of known specimens via the
single-nearest-neighbor classifier. Although the feature file
contained the values for the four previously described fea-
tures, only two were used to identify the cotton boll weevils:
area and the 2D hue/saturation color histogram. For each
unknown, the percentage difference in area and percentage
difference in overlap of the 2D histogram with respect to each
prototype in the feature file was calculated. The unknown was
assigned to the class of the prototype that was closest with
respect to area and distribution of colors. If, however, the best
match differed by more than 45% in area, or if the contents of
the two 2D hue/saturation histograms overlapped by less than
40%, this embodiment concluded that the match was not good
and that the object must be something that had not been
presented to the classifier during training (a species or object
not represented among the prototypes of the feature file). In
this case, the unknown was assigned to a class called OTHER.
These thresholds were empirically arrived at by prior testing
with sets of different insects.

The first test image (FIG. 42) was analyzed by running the
software BugClassify.exe with the images depicted in FIG. 40
and FIG. 42 and the feature file, Weevil.txt, as input. FIG. 40
represents the previous background state while FIG. 42 is the
image containing the three insects to be detected and identi-
fied. FIG. 44 is an output from that process. All three boll
weevils were detected with no false detects. The detected or
labeled pixels associated with each of the detected insects
were replaced in the output image with the color code for the
species class that was assigned by the classifier. If the classi-
fier decided that an unknown arthropod was a cotton boll
weevil, each of the pixels that were associated with that
unknown by the segmentation process was colored green in
the output image. Pixels that were associated with an
unknown that was assigned to the class OTHER were colored
red in the output image. Background pixels had the same
values as the input image.

The software BugClassSilh.exe was executed for the sec-
ond test image (FIG. 43), but this time FIG. 40 and FIG. 43
plus the feature file, Weevil.txt, were used as input. FIG. 45 is
an output from that process. The weevils are identified as such
according to their color code (green) and the cantharid is
identified as the class OTHER (color coded red). FIG. 46
illustrates how close the unknown or test boll weevils are to a
reference boll weevil in feature space. This figure also shows
how different the cantharid is from the reference boll weevils
in terms of both area and color. The cantharid beetle was
rejected as a boll weevil because the area of the best weevil
match differed from the cantharid beetle by more than 45%
and the color histograms overlapped by less than 40%. How-
ever, if a statistical outlier test is used instead, such as Grubbs’
test, a confidence level can be assigned to the best match. In
this case, the best match for the cantharid beetle can be
rejected because Grubbs’ test indicates that there is less than
a 1% probability that the cantharid is from the same popula-
tion as the reference boll weevils based on area alone. There-
fore, it can be concluded that the cantharid beetle does not
belong to a class of any of the reference specimens and should
be labeled as OTHER. It would have been possible to identify
the cantharid as such if the system had been previously
trained to identify cantharids by including the feature values
of one or more reference cantharids. However, in some
embodiments the concern is only with counting the number of
boll weevils.
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These tests have again demonstrated the validity and prac-
ticality of the invention’s concepts. It was shown that the
invention is able to detect insects within an image. It was
shown that it is possible to generate distinguishing features to
recognize insects and to recognize other objects for which the
classifier was not trained. Objects that were not intended to be
detected and counted were appropriately assigned to a class
called OTHER or unknown. It was also shown that by using
the image-processing algorithms of some embodiments, a
digital color camera and a computer system, it is possible to
automate the detection and classification of insects and other
arthropods.

The various method embodiments of the present invention
can be implemented on a programmed computer, hardware
circuit, or other information-processing apparatus. As such,
they are referred to as “machine-implemented methods.”

Some embodiments of the invention provide an apparatus
that includes an input device configured to receive image
information, a detector configures to distinguish one or more
objects, including a first object from a background of the
image, a histogram generator that generates histogram infor-
mation for the first detected object, and a comparing device
that compares the histogram information to each on of a
plurality of stored histogram records in order to generate an
identification of the object.

In some embodiments, the object is an arthropod. In some
embodiments, the objectincludes a plurality of partially over-
lapped arthropods to be distinguished from one another.
Some embodiments provide a machine-implemented method
that includes acquiring a digital image; and detecting a first
arthropod object in the image, wherein the detecting includes
distinguishing the first object from a background image using
image information selected from a group consisting of lumi-
nance, hue, color-saturation information and combinations
thereof. In some embodiments, the image information used to
distinguish the first object from the background includes
luminance, hue and color-saturation information. Some
embodiments further include detecting a second object in the
image, wherein the second object is at least partially over-
lapped with the first object, and distinguishing the first object
from the second object using image information selected
from a group consisting of luminance, hue, color-saturation
information and combinations thereof. In some embodi-
ments, the second object is not an arthropod object. Some
embodiments further include detecting a second object in the
image, and distinguishing a type of the first object from a type
of'the second object using image information selected from a
group consisting of luminance, hue, color-saturation infor-
mation and combinations thereof. In some embodiments, the
type of the second object is not an arthropod type. Some
embodiments further include generating first-object histo-
gram information based at least in part on color information
of the detected first object, and classifying a type of the first
object based on the first object histogram information and
storing a categorization identifier based on the classifying. In
some embodiments, the first-object histogram information is
generated based on image information selected from a group
consisting of luminance, hue, color-saturation information
and combinations thereof, and wherein the categorization
identifier includes a genus identification and a species iden-
tification. In some embodiments, the acquiring of the image
includes filtering light for the image to limit a spectral range
of the light.

In some embodiments, the acquiring of the image includes
filtering light for the image to limit a polarization of the light,
and wherein the image information used to distinguish the
first object from the background includes luminance, hue and
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color-saturation information. Some embodiments provide an
information-processing apparatus that includes an input
device coupled to receive a digital image, and a detector that
detects a first arthropod object in the image, wherein the
detector includes a comparator operable to compare image
information selected from a group consisting of luminance,
hue, color-saturation information and combinations thereof,
and wherein the detector distinguishes the first object from a
background image based on the comparison. In some
embodiments, the image information used by the comparator
includes hue and color-saturation information. In some
embodiments, the detector further detects a second object in
the image, wherein the second object is at least partially
overlapped with the first object, and the detector distinguishes
the first object from the second object based on a comparison
of image information selected from a group consisting of
luminance, hue, color-saturation information and combina-
tions thereof. In some embodiments, the second object is not
an arthropod object. In some embodiments, the detector also
detects a second object in the image, and distinguishes a type
of'the first object from a type of the second object using image
information selected from a group consisting of luminance,
hue, color-saturation information and combinations thereof.
In some embodiments, the type of the second object is not an
arthropod type.

Some embodiments further include an identifier that asso-
ciates categorization identification with the first object. In
some embodiments, the categorization identification includes
a genus identification and a species identification.

Some embodiments further include an image-acquisition
device that includes a filter to limit a spectral range of
acquired light. Some embodiments further include an image-
acquisition device that includes a filter to limit a polarization
of'acquired light, and wherein the image information used to
distinguish the first object from the background includes
luminance, hue and color-saturation information. Some
embodiments provide a classifier that can recognize the
arthropods regardless of how they are oriented with respect to
the imaging device, and in addition to classifying arthropods
the system can recognize non-arthropod objects or clutter,
image artifacts such as shadows and glare, occlusion or over-
lapping and touching objects, and incomplete arthropods and
the system optionally including one or more of the following:
a) an imaging device to capture pictures of arthropods and the
device may be chosen from among the following image sen-
sor types: digital camera, digital scanner, analog or digital
video camera; and the sensor should collect color imagery,
but a black and white sensor can be substituted for the purpose
of reducing cost.

b) an appropriate camera lens for optically coupled to the
image device to insure sufficient magnification of the insects
and a practical field of view.

¢) one or more lens filters to select the portion of the light
spectrum that is most efficient for detecting the arthropods of
concern and/or filter(s) to selectively remove non-polarized
light to reduce glare.

d) a box-like lid for a scanner to prevent contact of the scan-
ner’s 1id with the arthropods.

e) a polarizing filter placed on the scanner surface to reduce
glare by removing non-polarized light.

f) illumination device such as a LED illuminator, ring light or
high intensity flash to insure uniform and similar lighting
conditions for each image captured and where possible to
reduce shadows and glare.

g) a communication link between the camera and the proces-
sor, which can include: a direct cable connection using a
Universal Serial Bus (USB) connection or a RS-232 serial
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port connection; wireless device using a radio or infra-red
communications band; a phone modem; or an internet con-
nection.

h) a processor along with sufficient memory, and operating
system and software to control the camera’s functions includ-
ing lighting and color settings, requesting the capture and
transfer of images, processing the image(s) for the detection
and identification of arthropods and printing out and/or dis-
playing the results; said processor can be a general purpose
computer or specialized computing hardware designed for
the arthropod detection and identification system.

1) software to adjust camera settings, capture an image, adjust
parameters for image processing routine, apply image pro-
cessing techniques for the detection and identification of the
arthropods, display results to a computer monitor, save results
to a computer file, and/or edit files.

j) a surface to place or capture the arthropods that allows the
imaging device a clear view to collect images and this surface
can include a simple stand alone inspection surface or a
surface that is part of a trap or collection device.

Some embodiments provide a first method implemented in
software that automatically detects objects including arthro-
pods in an image using luminance, hue and color saturation
information to distinguish the objects from a background or
an estimated background image.

Some embodiments provide a second method imple-
mented in software that automatically rejects shadows by
examining differences in luminance, hue and color saturation
between the background or estimated background image and
the image being checked for arthropods.

Some embodiments provide a third method implemented
in software to extract statistical features that characterize an
object’s size, shape, luminance and colors (which in the case
of reference specimens of arthropods can be stored to a com-
puter file or database) and can be used to calculate a mean and
standard deviation for each feature from among the reference
specimens of a species, which is to be similarly stored with
the features.

Some embodiments provide a fourth method implemented
in software to extract: 1) an object’s silhouette or outer pro-
file; 2) distinguishing internal edges due to large gradients in
luminance or color; 3) reference points of a known offset from
the silhouette containing hue and saturation information; and
4) the prototype or reference silhouettes and color samples of
arthropods can be stored to a computer file or database.

Some embodiments provide a fifth method or statistical
classifier implemented in software that automatically com-
pares statistical features extracted by the third method just
described from reference specimens of arthropods and the
features similarly extracted from the unknown object under
consideration.

Some embodiments provide a sixth method that, on the
basis of the unknown’s set of features and those of the refer-
ence specimens, finds the class which the unknown object is
mostly likely to be a member of.

Some embodiments provide a seventh method to assign a
statistical confidence to classifier’s decision by comparing
how each of the features of the unknown are distributed
relative to the mean and standard deviation of the features
belonging to the members of the class of the matched refer-
ence specimen.

Some embodiments provide an eighth method to use the
confidence level to make a final decision which can be either:
1) accept the class of the best match for the unknown if the
confidence level is good; 2) reject the best match and assign
the unknown to an undeterminable class not represented by
the reference specimens when one or more features of the
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unknown exceed the confidence level associated with the
class of the best match; 3) as an alternative to item 2, rather
than reject the unknown as undeterminable when there is a
low confidence instead pass the decision making on to a
higher-level syntactic or structural pattern recognition that
can deal with occlusion, missing arthropod features, and clut-
ter.

Some embodiments provide a ninth method or classifica-
tion process implemented to run automatically in software
that compares the prototype silhouettes and associated line
edges of arthropod structures and color-sample point-of-ref-
erence specimens extracted by the fourth method (ust
described above) with the silhouette and associated informa-
tion of the unknown.

Some embodiments provide a tenth method and/or logic to
iteratively translate, rotate and scale each prototype silhouette
looking for the best match and record other good matches for
the silhouette and repeat this process for each prototype sil-
houette.

Some embodiments provide an eleventh method and/or
logic that assigns the best silhouette/color sample match to
the detection or portion of the detection, provided that the
silhouettes and color samples fit the unknown well or other-
wise assigns the detected area as clutter.

Some embodiments provide a twelfth method and/or logic
that repeats the process for other portions of the detection that
have not been explained by any previous silhouette matching
until all the detection’s area has been explained as being part
of an arthropod(s) or clutter.

Some embodiments provide a thirteenth method and/or
logic that takes the final results from the process (or subcom-
binations of the process) defined above and updates the spe-
cies count of the arthropods and clutter that have been
detected and identified by the system.

Some embodiments provide a fourteenth method imple-
mented in software to automatically report the detected and
identified arthropods and clutter, and to provide a summary of
the detections and identifications to a user’s screen, computer
file, and/or to output a graphic representation to an image file
that is saved to memory or displayed to the user’s screen.

Some embodiments provide a fifteenth method imple-
mented in software to allow the user to interact with the
software.

Some embodiments provide a method to alter various
parameters of the detection and classification process to allow
the user to adapt the process to special situations.

Some embodiments provide a sixteenth method to allow
the user to request the saving or output of various intermediate
results, such as a detected pixels image, segmentation or
labeled image of detections, silhouette image.

Some embodiments provide a seventeenth method to alter
the settings of the image device. For example, automatic
analysis of the image can provide feedback to the image
device to improve subsequent images. Alternatively, the
human user can look at the image, and provide input to adjust
the settings of the imaging device or the illumination pro-
vided.

Some embodiments provide an eighteenth method to
request the capture of an image or the scheduling of periodic
captures of images along with the processing of those images
for the detection and identification of arthropods.

Some embodiments provide a nineteenth method to sup-
port the system with off-line editing of the reference feature
and silhouette files to associate the appropriate class identity
with each feature set or silhouette.

Some embodiments provide combinations of two or more
of the first through nineteenth methods just described, or of
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subportions of these methods. These combinations do not
necessarily require that any one of the methods be either
included or omitted. Some combinations further include
other processes, methods, or portions thereof described else-
where herein. Some embodiments of the invention include
(see FIG. 3) a computer-readable media 321 (such as a dis-
kette, a CDROM, a DVDROM, and/or a download connec-
tion to the internet) having instructions stored thereon for
causing a suitably programmed data processor to execute one
or more of the above methods.

Some embodiments provide various supplies that enhance
the arthropod-capture process, and/or the image-acquisition
process. For example, some embodiments provide an arthro-
pod-capture substrate that includes a sticky surface, and is
also colored. In some embodiments, the substrate is colored
to attract arthropods of interest. In some embodiments, two or
more contrasting colors are provided in order to provide
better contrast for a first type of arthropod on a first color, and
better contrast for a second type of arthropod on a second
color. In some embodiments, a plurality of different colors
and/or gray scales and/or hues and saturations are provided
(either as part of the substrate, or as an ancillary surface that
will be imaged with the substrate and the arthropods), in order
to provide calibration information (color (such as hue and
saturation), brightness, and/or contrast) in each captured
image. In some embodiments, the substrate includes a chemi-
cal attractant. In some embodiments, the chemical attractant
is supplied as a separate source (e.g., a carbon dioxide con-
tainer such as a gas cylinder, or supplied from a generator or
flame, in order to attract mosquitoes or other arthropods)
wherein the chemical is emitted through or near the sticky
capture surface of the substrate.

Itis understood that the above description is intended to be
illustrative, and not restrictive. Many other embodiments will
be apparent to those of skill in the art upon reviewing the
above description. The scope of the invention should, there-
fore, be determined with reference to the appended claims,
along with the full scope of equivalents to which such claims
are entitled. In the appended claims, the terms “including”
and “in which” are used as the plain-English equivalents of
the respective terms “comprising” and “wherein,” respec-
tively. Moreover, the terms “first,” “second,” and “third,” etc.,
are used merely as labels, and are not intended to impose
numerical requirements on their objects.

What is claimed is:

1. An apparatus for identifying arthropods in color-digital
image information from a color digital camera system con-
nected to a communications unit, wherein the camera system
has a lens, wherein the camera system is configured to obtain
afirstimage of substrate and an arthropod on the substrate and
to form first color-digital image information from the first
image, wherein the communications unit has an interface
operable to communicate across an internet, wherein the
communications unit is operatively coupled to the camera
system and configured to receive the first color-digital image
information from the camera system and to transmit a first
signal across the internet, and wherein the first transmitted
signal is based on the received first color-digital image infor-
mation, the apparatus comprising:

a computer coupled to the internet that receives the first
transmitted signal with the first color-digital image
information;

a detector, coupled to the computer, that detects the arthro-
pod in the first color-digital image information;

a histogram generator, in the computer, that is coupled to
receive the first color-digital image information, and to
generate a first object-image histogram of the first image
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based at least in part on the first color-digital image
information, wherein the first object-image histogram of
the first image has a plurality of bins, each one of the
plurality of bins located on: a row corresponding to a
value of a first color-space dimension, and a column
corresponding to a value of a second color-space dimen-
sion; and

a classifier, in the computer, that classifies the arthropod

based on the first image-object histogram of the first
image and provides a categorization identifier based on
the classification.

2. The apparatus of claim 1, wherein the first color-digital
image information includes hue information for the first
color-space dimension and color-saturation information for
the second color-space dimension.

3. The apparatus of claim 1,

wherein the camera system obtains a second image of the

arthropod on the substrate, forms second color-digital
image information from the second image-and transmits
a second signal across the internet, wherein the second
transmitted signal is based on the second color-digital
image information,

wherein the computer further receives the second transmit-

ted signal with the second color-digital image informa-
tion,

wherein the detector detects the arthropod in the second

color-digital image information,

wherein the histogram generator is coupled to receive the

second color-digital image information, and to generate
a second object-image histogram of the second image
based at least in part on the second color-digital image
information, and

wherein the classifier classifies the type of the arthropod

also based on the second-object histogram information.

4. The apparatus of claim 1, wherein the substrate includes
a sticky surface having a plurality of areas including a first
area and a second area, each of the plurality of areas having a
solid color, and wherein the solid color of the first area con-
trasts with the solid color of the second area in order to obtain
images of insects having different colors that contrast with
one of the solid colors.

5. The apparatus of claim 1, wherein the classifier includes
a KNN (K”-nearest neighbor) classifier.

6. The apparatus of claim 1,

wherein the camera system obtains a second image of the

arthropod on the substrate, forms second color-digital
image information from the second image-and transmits
a second signal across the internet, wherein the second
transmitted signal is based on the second color-digital
image information,

wherein the computer further receives the second transmit-

ted signal with the second color-digital image informa-
tion,

wherein the detector detects the arthropod in the second

color-digital image information,

wherein the histogram generator is coupled to receive the

second color-digital image information, and to generate
a second object-image histogram of the second image
based at least in part on the second color-digital image
information,

wherein the classifier classifies the type of the arthropod

also based on the second-object histogram information,
wherein the first image is obtained using a source of front
illumination light, and

wherein the second image is obtained using a source of side

illumination light such that the first image has different
lighting conditions than the second image.
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7. A method for identifying arthropods in color-digital
image information from a color digital camera system having
a lens, wherein the camera system obtains a first image of a
substrate and an arthropod on the substrate, forms first color-
digital image information from the first image and transmits a
first signal to a remote computer across an internet, wherein
the first transmitted signal is based on the first color-digital
image information, the method comprising:

receiving, from the internet and into the computer, the first
transmitted signal with the first color-digital image
information;

detecting, in the computer, the arthropod in the first color-
digital image information;

generating, in the computer, first-object histogram infor-
mation based at least in part on the first color-digital
image information; and

classifying, in the computer, a type of the arthropod based
on the first-object histogram information and generating
a categorization identifier based on the classifying.

8. The method of claim 7, wherein the camera system
obtains a second image of the arthropod on the substrate,
forms second color-digital image information from the sec-
ond image and transmits a second signal to the remote com-
puter across the internet, wherein the second transmitted sig-
nal is based on the second color-digital image information,
the method further comprising:

receiving, from the internet and into the computer, the
second transmitted signal with the second color-digital
image information;

detecting, in the computer, the arthropod in the second
color-digital image information;

generating, in the computer, second-object histogram
information based at least in part on the second color-
digital image information; and

wherein the classifying of the type of the arthropod is also
based on the second-object histogram information.

9. The method of claim 8, wherein the first and second
images are selectively illuminated with different wavelengths
ofillumination light selected to enhance images of arthropods
of interest such that the second color-digital image informa-
tion includes different color information than the first color-
digital image information.

10. The method of claim 8, wherein the first and second
images are selectively illuminated with different wavelengths
ofillumination light selected to enhance images of arthropods
of interest such that the second color-digital image informa-
tion includes different fluorescence information than the first
color-digital image information.

11. The method of claim 8, wherein the first and second
images are selectively illuminated with different polariza-
tion-directions of illumination light selected to enhance
images of arthropods of interest such that the second color-
digital image information includes different polarization
information than the first color-digital image information.

12. The method of claim 7, further comprising adding the
categorization identifier to a database, the database including
information on a date and a location associated with the
categorization identifier.

13. The method of claim 7, further comprising applying a

pest-control protocol based on one or more categorization
identifiers of the database.

14. The method of claim 7, wherein the classifying
includes KNN (K*-nearest neighbor) classifying.
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15. The method of claim 7, wherein the first object-image
histogram has a plurality of bins, each one of the plurality of
bins located on: a row corresponding to a value of a first
color-space dimension, and a column corresponding to a
value of a second color-space dimension.

16. A non-transitory medium having instructions stored
thereon for causing a suitably programmed remote data pro-
cessor in a computer connected to an internet to execute a
method for identifying an arthropod in color-digital image
information, the method comprising:

receiving, from the internet and into the computer, first

color-digital image information;

detecting, in the computer, the arthropod in the first color-

digital image information;

generating, in the computer, a first-object histogram based

at least in part on the first color-digital image informa-
tion; and

classifying, in the computer, a type of the arthropod based

on the first-object histogram and generating a categori-
zation identifier based on the classifying.

17. The computer-readable medium of claim 16, further
comprising instructions such that the classifying further
includes KNN (K*-nearest neighbor) classifying.
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18. The computer-readable medium of claim 16, wherein
the first object-image histogram has a plurality of bins, each
one of the plurality of bins located on: a row corresponding to
a value of a first color-space dimension, and a column corre-
sponding to a value of a second color-space dimension.

19. The computer-readable medium of claim 16, further
comprising instructions such that the method further com-
prises adding the categorization identifier to a database in the
computer, the database including information on a date and a
location associated with the categorization identifier.

20. The computer-readable medium of claim 16, further
comprising instructions such that the method further com-
prises:

receiving, from the internet and into the computer, second

color-digital image information;

detecting, in the computer, the arthropod in the second

color-digital image information;

generating, in the computer, second-object histogram

information based at least in part on the second color-
digital image information; and

wherein the classifying of the type of the arthropod is also

based on the second-object histogram information.
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