United States Patent

US007237268B2

(12) (10) Patent No.: US 7,237,268 B2
Fields 45) Date of Patent: Jun. 26, 2007
(54) APPARATUS AND METHOD FOR STORING 6,731,312 B2 5/2004 Robbin
AND DISTRIBUTING ENCRYPTED DIGITAL 6,874,139 B2 3/2005 Krueger et al.
CONTENT AND FUNCTIONALITY SUITE 6,886,098 Bl ~ 4/2005 Benaloh
ASSOCIATED THEREWITH 6,978,376 B2* 12/2005 Giroux et al. 713/189
6,983,278 B1* 1/2006
3k
(76) Inventor: Daniel M. Fields, 717 S. Pines Rd., 2002/0078361 AL* 6/2002
Spokane, WA (US) 99206 (Continued)
(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35 Anane, R., et al, ‘A Distributed Scheme for Secure Data Access’,
U.S.C. 154(b) by 0 days. Dept. of CS and Network Systems, AINA ’06, entire document,
http://ieeexplore.iece.org/iel5/10777/33944/01620389 pdf.*
21) Appl. No.: 11/181,608
(1) Appl. No ’ (Continued)
(22) Filed: Jul. 13, 2005 Primary Examiner—Nasser Moazzami
. A Assistant Examiner—Ronald Baum
(65) Prior Publication Data (74) Attorney, Agent, or Firm—Charles A. Lemaire;
US 2006/0015944 Al Jan. 19, 2006 Lemaire Patent Law Firm, P.L.L.C.
Related U.S. Application Data 7 ABSTRACT
(60) Provisional appl.ic.ation No. .60/ .5875529, filed on Jul. The present invention provides for a method and system for
13, 2004, provisional application No. 60/587,531, providing a type of Managed/Secured File Transfer between
filed on Jul. 13, 2004. one or more computers arraigned in server-client or peer-
to-peer configuration. This method and system takes digital
(51) Int. Cl content in the form of a file, shreds this file into separate
Ho4L 9/32 (2006.01) pieces and encrypts each piece separately. Once encrypted,
(52) US.CL s 726/27, 726/30, 713/153, each piece is stored into a database. Client applications can
709/104; 709/203 then access these pieces of digital content over a network,
(58) Field of Classification Search None decrypt and reassemble each piece to be played in the case
See application file for complete search history. of audio/video content, or viewed in the case of visual
(56) References Cited content. In some en.lbodlment.s, the content requested by the
client application is stored into a second database in a
U.S. PATENT DOCUMENTS shredded and encrypted format, whereas in other embodi-
] ments the content is reassembled into the original non-
;"gzg’gzg i i; }gg; ?ar‘r’]lkda ett all' encrypted and non-shredded file format. This method and
/12 omko et al. . ¢
6006332 A 12/1999 Rabne ef al. systeﬁl czn r§51de on a computer system, hand held device,
6,385,596 Bl 5/2002 Wiser et al. or other device.
6,671,687 B1* 12/2003 Pederson et al. 707/9
6,728,729 Bl 4/2004 Jawa et al. 26 Claims, 29 Drawing Sheets
NETWORK SERVER

201 u

MINICOMPUTER

MAINFRAM% o8 20?\/

— 209 “

|

== |

i — |

s 211 203
SERVER

NETWORK PC

LAPTOP
COMPUTER

200

WIRELESS STATION -

204

DESKTOP PC

US 7,237,268 B2
Page 2

U.S. PATENT DOCUMENTS

2005/0117746 Al
2005/0147240 Al
2005/0193210 Al

OTHER PUBLICATIONS

6/2005 Benaloh
7/2005 Agrawal et al.
9/2005 Benaloh

Chang, Chin-Chen, et al., “A Database Record Encryption Scheme
Using the RSA Public Key Cryptosystem and Its Master Keys”,
Proceedings of the 2003 International Converence on Computer
Networks and Mobile Computing, (2003).

Digital Content Protection LLC, “High-bandwidth Digital Content
Protection System”, Web address: http://www.digital-cp.com/home/
HDCPSpecificationRevl__1.pdf, (Jun. 9, 2003), 1-85.

European Committee, for Standardization (CEN—ISSS), “Digital
Rights Management Final Report”, web address: http://europa.eu.
int/comm/enterprise/ict/policy/doc/drm.pdf, (Sep. 30, 2003), 1-257.

Hitachi, Intel, Matsushita Electric Industrial, Sony, Toshiba, “5C
Digital Transmission Content Protection White Paper”, Web
address: http://www.dtcp.com/data/wp__spec.pdf, (Jul. 14, 1998),
i-ii+1-13.

Microsoft Corporation, “Architecture of Windows Media Rights
Manager”, web address: http://'www.microsoft.com/windows/
windowsmedia/howto/articles/drmarchitecture.aspx, (May 2004),
1-3.

Stamp, Mark, “Digital Rights Management: The Technology
Behind the Hype”, Journal of Electronic Commerce Research, vol.
4, No. 3, (2003), 102-112.

Yeung, Siu F,, et al., “A Multikey Secure Multimedia Proxy Using
Asymmetric Reversible Parametric Sequences: Theory, Design, and
Implementation”, IEEE Transactions on Multimedia, vol. 7, No. 2,
(Apr. 2005), 330-338.

* cited by examiner

US 7,237,268 B2

Sheet 1 of 29

Jun. 26, 2007

U.S. Patent

IAIAA OILINOVIN

GOl

3ANa 3aveL ~ Ot

I—]

Sii

Gl

01

™ g1

YILNIN

B ————\N - d3TTOHLNOO
W= -

Gl

wn
-~
-~

o

,ooooooom% JIAINA AddOT14

o|C [¥3T08INOD| [T
Ndo 3 39VHOLS Rm: n_\mmov
o]

o]

O0O00000O0

HOLINOW w 0000000 % ym>_mD IvOILdO Z01
601 901
ol GLl m&/\ oLl = 7\

N
< WY St sng WVIY3s
801 IVSHIAINN

o] O

004 Il Ol

US 7,237,268 B2

Sheet 2 of 29

Jun. 26, 2007

U.S. Patent

318vl
viva

4003y
a3yHS

_ , 1

L
90¢e A@Ww m — [314
- 1
— -] NOILYONddY IOHVL
viva M m | |
¥3avaH _] =
g |C 5
: zoe
71 gog V0E Nmom ¢ "Ol4
008 §8300dd S$S300dd
NOILJAYNONT ONIAAIUHS
2d 401Ms3a
$0zZ : Jd YHOMLIN
= H3AY3S
'NOILVAS SST1FHIM £0¢ Lz ~ mmmmmmm \N Loz
. 602
INVHANIVIA
MALNINOD HILNAWODINIW
00c doidvi

HIAYIS MHOMLIN

¢ 9l

US 7,237,268 B2

Sheet 3 of 29

Jun. 26, 2007

U.S. Patent

90€
oz’ M €07 H g01d _]
AV £LT I q0714d I 0
AZISANNHD | INNODINALNOD LNHLNOD A1 AIPINNHD
%m:q &.E %o:u fLmS %u
/n.D&.NJﬁ.Se(XM
dTHOM OT113H
[N\
ey -
Ly GoE
AL EL'T q4071d 1 £ 4dd | F'TdNVXH 818 . $C-€0-600T | AAd ATdNVXH 1
FZIS LNNOD | LNNOD | NOISNALXH HANVN .

ANNHD | LNZLINOD { LNZLNOD | JANNHD . 114 HHA EVAR d1Lvd | NOLLdRDSEd | didTid
< < < < < < < < < <
oLy 60% gor L0V . 90t Sov 1204 cop 20b LoV

00 ¥ Old

US 7,237,268 B2

Sheet 4 of 29

Jun. 26, 2007

U.S. Patent

2874

4dd'31dWvX3

Ly

N LT v2-90-5002 1 L L
aninoTd 1No | a1aviuod QTHOM OT13H
NIDOT| STUIdXF| OWIASI| aIddaHD SI ol
Gi§ vls €15 ZLS LS
L
N HLIAS
0 d L L L d L | WOD'ISNQ | €221'vET 261 q0f1
ANVYN
INNOD | Ning TAVHS [QUVMUOL | MAIA | AJOD | LIdd| UIAWAS| dIYIANES
NYNd NVD NV NV | NVO| NVO| NVD| dDUNOS dD¥NO0S [YANMO
S < <2 S < < 2 < < <
0LS 605 206 10S 908 G0S $0S £0S Z0S LOS
PELT q0714d] £ 44d | J1dNVXA | PISI'S | $Z-50-500Z | 20d T1dNVXT]
EVAL) LINNOD | INNOD | NOISNALX3 JNVN
LNNOD | LNZLINOD | LINALNOD | INAHD 71 414 qZIS 91vd | NOLLJIMOSAd | drdid
T = e %
R 60v 80y L0v a0t SO¥ 0y cov Z0v e
005 G 'Old

U.S. Patent Jun. 26,2007 Sheet 5 of 29 US 7,237,268 B2

600
604
FIG. 6 D
WORK STATION
= 605
PERSONAL COMPUTER
@!] INTERNET 606
NETWORK SERVER 603
| %609 LAPTOP COMPUTER
AIRPLANE WIRELESS 607
| STATION :
608 S~
PDA
O @
AUTOMOBILE
FIG. 7 704 700

FERRARAAR

WORK STATION

702

==
—

PERSONAL COMPUTER

f\l‘
705
PERSONAL COMPUTER

AIRPLANE

WIRELESS Jg707
STATION = \J -

US 7,237,268 B2

Sheet 6 of 29

Jun. 26, 2007

U.S. Patent

Q3AYISTY SLHOM 1TV "S002-1661 "ONI ‘FHVMLIOS WOJITFHH O LHOIYAOD

d13H 4 n—¢8

INJWIOVYNVIN ¥3sn

LINIWIOVNVI SVITV

SONILLIS TVHIANIO Fr 108

NOILVYNOIANOD

008 ¥ 908

8 OIA

zo_wmmmimzm SANOJ3S | ¢ | FLVY HSTFHATY

/ /

US 7,237,268 B2

Sheet 7 of 29

Jun. 26, 2007

U.S. Patent

006 L »

6 ‘DI

A3AY3ISTY SLHOIN T1V "G00Z-1661 "ONI ‘TYYMLIOS WOJIIFH4 @ LHOIHALOD

130NV VS

-]
[§] SERTERENIFEEN R
000' SNV d33¥ NIIMLIE TYAYTLNIA
| 000°0¢ | FOVSSTN LV 1 WOHT WAUALINI]

SNOILAO A¥L3¥
[000°0€ | AONaNDIY4 L~/ Q3zZINININ Lav1s [H
a31avNa A8 Arwoiviworny dn onia [

INIWIDOVYNVIN AHOWIIN SNOILJO dNLYVLS

LNdLNO ¥3AY3s I1avsia []|
SIONVHO NOILYENDIANOD FAVS LON0a [T

a3uINo3d sN1vo1 [_H

NOILJA¥ONE F1avL MOTTY [l

ISTIHOIH | ALINOMNd Qv3HHL

an|[0z | 39vHOLS AUVHOdWIL A

an| 0S WYY WNIWIXYI

_ 9HO3L | ETRENERS

NOILYYNOIINOD TVHINIO

916

616

SR
€16

016
L 606

L 806
_— 206
_— 906
"_— 06
06
€06
208
—_— 06

US 7,237,268 B2

Sheet 8 of 29

Jun. 26, 2007

U.S. Patent

0001 ¥

01 DI

J3AY3S3Y SLHO™ TV "S002

1661 "ONI ‘FIVYMLIOS WOQIFHS @ LHOIYALOD

T3IINYI JNVS

N 0L0l

EREVIER
(1v207) ¥3sn ITONIS

70'0'894°261:0 JO)ABPY| ¥3LdvAV MHOMLIN-

_ 10162 1d0d LN3ITO ddN -
1444 _ LHOd ¥3AYES daN-

_ Shee 1d0d d01

- 600}
- 8001

n_~ 200}
n_~ 9001
"~ S00}
-~ 700l

600, —L~ SLSVOOYOHg HO4NALSITEA 318vN3 AL~ 00t
dI/doL L~ 00}

SONILLIS HHOMLAN 8 ST100010dd

US 7,237,268 B2

Sheet 9 of 29

Jun. 26, 2007

U.S. Patent

0L L>

Il 'OIAd

Q3AY3ISTY SLHONM 11V "6002-1661 "ONI ‘FHYMLIOS WOQITIA © LHOMALOD

SONILLIS MYOMLIN 2 700010¥d

INJWIOVNVIN §3sn

INJWIOVYNVIN SYITV

d13H

SONILLIS TVH3ANIO 577

NOILYENOIANOD
oLLL 6011
eLLL ZhLL AN 8011
2 2 r~ 2
00000 | 0 0 Q3aLdvis \ 001 | (44)¥3SN ITONIS
00000 | O 0 Q31dv1S | 10891261 (44) dI/doL
"038/SOSIW | SIOVSSAW | SLNIMD alvis | ssIuaav ANYN
SLuodsnvarf- THH
J0LL oLLL
V/ \/\ L SLLL
90:00:008A¥a0 [3wiLdn Wd 05:20:€ G002/8/2 | 3mIL Lavis [[v7
9oL —L—0 N 0L~ L~ ;0 40 Q3aLyvis
SHOSYNO{531avL| S3svaviva M SNOISS3S Y5INIID | /v LVLS T~ Ob
S04 g0l 201~ 101~
SOILSILYLS ¥3Ad3S

US 7,237,268 B2

Sheet 10 of 29

Jun. 26, 2007

U.S. Patent

d3AY3STH SLHOMN TV "G002-1661 "ONI ‘TIYMLI0S WOQTTH4 @ LHOMALOD

d13H

7IINVI VS

q]

\ N
[l «[» o

153144\dOIMSIAGHITLOS\SONILLIAS ANV SINJWNOCAVD LSAL449HIIL A

LH38-9\HOFLOS\NIVINOSY | 1¥39-HO310S

, Y1ya\3asvaosio 3SvE0S
00Z) —Lw N HLvd JWYN
/
. 0z’
¢l °OId
moﬁ\/\Sﬁ\/\ <o

gocl

US 7,237,268 B2

Sheet 11 of 29

Jun. 26, 2007

U.S. Patent

Q3AYISTY SLHOM TIV "G00Z-1661 "ONI ‘FUYMLIOS WOQTFHS @ LHOIYALOD

20E)
Logl

~

00gL

d13H TIINVYD AAVS d13H T3ONVI JAVS
4] »] [l <]]
£08l
'§3714 3SVavLYa
IHL OL INIOd OL ONILLTS SIHL FONVHO
NVO NOA SYITY FHL ONILYIHO LY NIAT
‘83714 3SVaYLYa
JHL NIVINOD TIIM LYHL ¥30104 THL
Msmdm 01 1037135 OL 1103 H1Vd 3HL 38N *"QISONILLIS ANV SINFWNOOALD | 1S31449H03L
[438-9HDALOSINIVVOSY | L¥3e-H0aL0S
* | HLvd VIVa3Sva0s:o 35va0S
T | 3WwN HLVd JNYN
ININTDVYNVYIN SYITY

E1 DI

US 7,237,268 B2

Sheet 12 of 29

Jun. 26, 2007

U.S. Patent

'9seqEIEp PIIBNOSSE aLp
0} SS2008 ||e 3|gesip pUe 1S aLp o)
seje SLp SAOWS ApusuewLsd M S|

‘Selje siyj saouia4

vovL

vl ©Old

US 7,237,268 B2

Sheet 13 of 29

Jun. 26, 2007

U.S. Patent

‘paatasay sy Iy Sone-

66| 3Ul ‘BIeMIOS WERaBId @ Lo

[9ouey mww

BRI as VR e S

Gl Old

US 7,237,268 B2

Sheet 14 of 29

Jun. 26, 2007

U.S. Patent

J3AY3SIH SIHOIE TV "S00¢

-1661 "ONI ‘FHYMLI0S WOQTTFHH @ LHOIHALOD

| Il <[> i

d13H < | T3INVD nvs | 14
0191
6091
LY3SNI E\.\W\M 8091
31vadn BH—— 2091
m_<m_m_‘\.\M\

909
HOLVMISININGY CHH
SNOISSINYAd|F L~ 249t

|~ _ JEREN
| quomssvd| | /\:8
Q¥OMSSVd 13§
_ 1S4l 1439 [REE 1439
_ 1SY1 5] NINQY
NINQY | WYNLSHIS | JWYNLSYT ardasn

and3sn

INJWIOVNYI H3SN

91 ‘OIA

US 7,237,268 B2

Sheet 15 of 29

Jun. 26, 2007

U.S. Patent

0.l

€041 77
20417
0L

0041 ¥

d3AH3STH SLHOME 11V 'S002

-166) "ON| ‘THYMLI0S WOAIFHI © LHOIHALOD

d13H ON Ea
"
N bOLL

'38vav.Lvad 3HL OL 31vIO0SSY
HIFHL IMOAFY ANV LSITIHL WOH4 ¥3Sn
JHL JACWIY ATLNINVINYIC TTIM SIHL

¥3Sn SIHL 3AOWY
OL HSIM NOA LVHL WHIANOD 3SV31d

4]

[[xofkded <] [w

\./._\ 1439 _ 1SHI4
\/_\ 1439 _ 18V
Lt Ly3g| aiM3sn

A
A

NINQY

NINQY

JNYNLSHIS

JNVYNLSYT

drd3sn

LINIWFOVYNYIN H3SN

o1 "OIA

US 7,237,268 B2

Sheet 16 of 29

Jun. 26, 2007

U.S. Patent

318v1
viva
Qqyoo3ad

'Yivad
d3avaH

0081

INIONT \

/ NOILJAHONS

Nwom_.
A«l IINAON
INFWIOVNYIN
IN31INOD

-————

N_ N\Nomp

\ L1081

A_(lw&om:

-~

4ad31diWNvX3

d1HOM OTI1aH

1

L

4

81 9ld

US 7,237,268 B2

Sheet 17 of 29

Jun. 26, 2007

U.S. Patent

5061 b0BL_ \mruas
2 INTO 82 8& ’
[—— __
\ _\ .)
O
g 1ad’ m,_n_s_<x c061
7 |
BE
506}
% IN3ND H0B) > wanuas
—] €06}
061
061
zZ06L 7 \o A= K w 906} |
[©] —_— —_—
2061 2061
006} —

cH

1#

61 Old

US 7,237,268 B2

Sheet 18 of 29

Jun. 26, 2007

U.S. Patent

¥3addna €102

o INGID
1408
All-‘.l
—
$10z
40d ' I1dWvX3
ANION uo NOILHOd

NOLdAYONT ginaon
301s ¥3AY3S mmN_s_oozé

3718v1
viva
ay003y JNIONI
NOILJAHONT
A/f QIS N3O
> -—
\ —
, NOLLYDMddY
S|
3QvaH HIAVd sloe
(LHODINNHO)LNIINOD le—] (OHABINNHO)INILNOD
- .
INTVA AT TLVAIEC A3HSVH INIVA A3 ILVAIN Q3HSYH
£00¢ MN mw
6002 8002

000¢

fﬂwn@

v10z ZL0Z 4Qd 3 TdWVXE
40 NOILHOd

1102

H3avaH
d3AY3s

PN

3avil
viva
adoo3y
a3dHs
HIAHIS

Jiavi
viva

aL0c

0¢ ©l4

US 7,237,268 B2

Sheet 19 of 29

Jun. 26, 2007

U.S. Patent

S0lL¢

601 8012
O INam - I~ HY> wanuas
_ _ ¢ MM % 1 _
= i - iﬁ
o ' S
40d mi_%qu wmv e K
o AR
0412
$012 1oLz
_% INTITO _ colz YIAYIAS
| E— |
oLz yole Lo
NSN)W\T%W q w W 9017 |
a
z0lz 2012
[y — 1
0012 LZ "©Id

US 7,237,268 B2

Sheet 20 of 29

Jun. 26, 2007

U.S. Patent

318vL
viva
ado03y
a3yHs

NOILVYOIlddY
HIAV1d

3NION3
NOILJAHONI

- A/ 3A1S IN3ND

(LHEQINNHOYLNIINOD

ag—

(0#QIMNNHO)LNILNOD

3INTVA AT O1NdNd d3HSYH

INTYA A3 OIM8Nd d3HSYH

¥344ng €ice

JFINAONW N3O alm
140S
- ————
—>
sice
3NIONT 44dd3N1dWVX3

NOILJAHONT TINTOW n_ozo_Eon_

3QIS "Y3AY3S mm_N_S_OOZé

£02Z %

60¢¢

0022

l

g0z2

-
- - NNNN
318v.L
vivQa

biee zize uoa Tidwyx3 | H3Av3H
JONOILHOd | H3AH3S

olee

¢c 'Old

US 7,237,268 B2

Sheet 21 of 29

Jun. 26, 2007

U.S. Patent

s0ez IN3ITO

[m—

LLEZ :

=

0

M3AY3S
60z gogz FOET [

— oy — R .,

—_—
uw v €0€Z —
10€2
H3AM3S
A3¥ 218Nd
/A3M YA
: £2e2
0L€Z

mmmm TMWMN

10€2

soe2 IEI:@@ H3IAYIS
1
AN3NO m“xmv
| £0ET L16Z momwif+
-— =hO) [
= muhﬁv Y :
Aw 3 c oiez
i Lige ez 1
H3IAMIS
A3¥ o1gnd
JAIM ALYARID ww S
e oiez
00£Z

£€¢ Old

>

US 7,237,268 B2

Sheet 22 of 29

Jun. 26, 2007

U.S. Patent

vive N
) czpz CCVT 6L¥2

eLpe /&vm omﬁu BLVZ L1Z 9LE

veve

WY BO:E YOO/ b1 1 " uogeanddy 83 592’ 1sBuassapan gy i
Wd BY:01 SO0Z/BZI3 BAUDIE dIZ UYHUIM B SBY'E __swc_umm.ommmmom% sBuias wojena -4
WY 0'1 S00Z/OLO ONUIIE IIZ UVHUIM X BIS'E 0-LiaBuBsSEWBANER 599 L4
WY 85:01 S00ZI0EIY 18pi03 81l 4 wsyoEIs €3
Wd 150} S00Z/BL/9 1aplo4 an | sjuawnaog ujey &3-
: Wd 01'6 500215219 18p104 8114 . swawindoq few €3
: WY 2501 S00Z/0EIY 18pj03 ally sawen ©)
\/ Y 9¥:04 SOOZEN 18piod 8l : (@ sauquiny
6¢ve Wd L€:L S00Z192/9 199104 4 1oue1g-nualjiels € (o sIq 1830
Wd BY:2 S00Z/92/9 18p)04 a4 vsn-nusioseg I3 () Addojy sig T €0ve

Wd 101 | S00Z/82/8 13piod 34

1Bndwod AN &

9evZ geve 2 "Ol4

US 7,237,268 B2

Sheet 23 of 29

Jun. 26, 2007

U.S. Patent

G
9¢ NJ mENJ

€16 U

V80 NOISYIA | QIAY3STY SLHOM IV "SO0Z-1661 NI “FHYMLIOS WOQIT41 @ LHONAAOD

\
ANOZ d0dd

ez

805¢

108
oNM

] ol hed|

SHIVHL

| CDISNIN 3TdINYS | [\ ANOHJWAS SNIAOHLI3E
WNav N

| eaui

%

R ARTA

Bl _sise

7252

25T

906¢ 1

005 L¥

?\ {00:00:0] 00:0 || a310373S SMOVHL ON

hY

O NOSISOSCSOEOREOEOR0 SEOSOBOSOSOBOBOSOBOBCRONG

5

YA L]

/ e Seeteebeter
fmomw fvomm

A//momm N//Nomm

- 8662

US 7,237,268 B2

Sheet 24 of 29

Jun. 26, 2007

U.S. Patent

I'l' NOISYIA Q3AY3534 SLHON TT¥ 50071661 NI “TUYMLIOS WO @ LHOIYAOD
D] ol 4] v [

1SILYY

009¢ >

9z "OId |

h_~09¢

US 7,237,268 B2

Sheet 25 of 29

Jun. 26, 2007

U.S. Patent

Wi s ll aey A RS AL S

R B

©'1{BiAdb)

_ ..-P._ﬁa:o_ﬂmx, . :

_‘ONM/\

AUBD oA Hulp [p31des © BuiAefUz apym ‘Aaod 12841s 152 A2 Plim D
AC2qqIao) J YL 21DJG2|80 4O WNJp |221S 2yl Jo buld Laams Joi)iwpy 2y
1] 2JIYM 4ODaG UDAQQIJD) D 4O SU24DM [DLSEAID UD puDs Jyoows ay Aofug

e L At S & M £ 57 B

004c

US 7,237,268 B2

Sheet 26 of 29

Jun. 26, 2007

U.S. Patent

e N W HE L STy it

wopaal] o JblAdo)y

i

ik

T T T T A
TR

BT

008¢

<
808¢

G0gz v08¢

£08¢

cosz 8¢ Ol

US 7,237,268 B2

Sheet 27 of 29

Jun. 26, 2007

U.S. Patent

'l NOISYIA AIAY353Y SIHOM TTY "S00T-1661 "IN ‘I4YMLIOS WOAITYd & LHOIYALOD
B L] o« <] v [
1 NINQY 'L NIDOT Wd 61:00:Z S002/8Z/5 6¢
NINQY | 10 NINGY DISNIN 440 9071 Wd $0:8€'S S002/2z/E 8z
NINQY 'L NIDOT Wd 228G $002/22/E 7
NINGY | 10 NINQY DISNIN 440 901 Wd 22625 S002/22/s 9%
1062 NINQY VENIDOT | INd 82:82°G S002/22/8 4
NINQY | 10 NINGY DISNW 440 9071 Wd Z1:60:% 5002/22/S vz
NINQY L'l NIDOT Wd 95507 S002/2Z/S ¥4
NINQY | 10 NINGV DISNW 440 9071 Wd 00:96°Z S002/2Z/€ 144
NINQY L'l NIDOT Wd 9+'25:2 5002/22/s
NINQY | 10 NINQY DISNIN 440 901 | INd LF:8V:2) S00Z/22/S
NINQY VENIDOT | IWd 22:2%°2) S00Z/22/E
NINGY | 10 NINGY QISNIN 440 907 WY +Z:01:6 S002/22/E
NINGQY | L'ONINGY DISNN 4409017 | INV 8410416 S002/22/S
NINGY | 10 NINGY DISNIN 440 907 Wd £€'82:9 G00Z/8L/¢
NINQY 1’0 NIDOT Wd 65:/2:9 5002/8L/¢
NINQY 1’0 LNODOT WY €2:71:2 S00Z/L LIS
0062 —L¥ NINQY 'O NIDOT WY 2£:€7:9 G00Z/L /S
. diN0J [/ JWYNE3SN / NOILdINOS3a / 3lva
6C ODIA T
/ / A
5062 06T £062 z06¢

US 7,237,268 B2

Sheet 28 of 29

Jun. 26, 2007

U.S. Patent

100€E N

000€ L

['l NOISY3A

@IAY353Y SLHOM TV "S00T-1661 "IN ‘TYYMLI0S WOQIFYS @ LHDIAAOD

0§ DI

US 7,237,268 B2

Sheet 29 of 29

Jun. 26, 2007

U.S. Patent

NOILYONddY
N3O
ONILSINOIY

v0cE ¥0ct v0ce

w

G0ce

m/\‘

00ce

¥3ANa
) €0ZE -10200104d
ﬁmm Mm Mm INILYN
- | . ‘
(o) [55
4ad'31dNvX3 20z

oo@m

._.Zm__n_o volLE yOLE VOLE

aSvaviva
d3NY3S

=

10Z€E
¢t Old

H3IAH3S

m m m s

‘.!I nooannn

juaann

=

qoLe W
| —

..._D.Vm_._as_,qxw €0le

c0lLe

7\\

00ie

US 7,237,268 B2

1

APPARATUS AND METHOD FOR STORING
AND DISTRIBUTING ENCRYPTED DIGITAL
CONTENT AND FUNCTIONALITY SUITE
ASSOCIATED THEREWITH

RELATED APPLICATIONS

This is a non-provisional application claiming priority to
U.S. Provisional Patent Application 60/587,529 entitled
“SYSTEM FOR ENCRYPTION, STORAGE, AND
DESTRUCTION OF MULTI-MEDIA CONTENT,” and
U.S. Provisional Patent Application 60/587,531 entitled
“SYSTEM FOR SECURE DIGITAL CONTENT DISTRI-
BUTION AND USE,” both of which were filed on Jul. 13,
2004, by the inventor of the present invention, and both of
which are incorporated by reference in their entirety.

FIELD OF THE INVENTIONS

This invention relates to the field of software and more
particularly software used for managed/secured file transfer
and the management of the digital rights associated with
copyrighted digital content in the form of files.

BACKGROUND OF THE INVENTION

An interest in the safe transmission and storage of data
(collectively referred to as Managed/Secured File Transfer)
is an interest shared by many sectors of industry. The secure
transmission of data (i.e., digital content) representing
music, movies, and documents containing, for example,
financial and/or medical data is critical to the industries that
rely on these forms of data. Some sectors of industry profit
from the artistic expression inherent in this digital content,
whereas other areas of industry profit from the facts and
figures that this digital content represents. Digital content in
the form of movies is responsible for an estimated six (6)
percent of the Gross Domestic Product (GDP) of the United
States. Digital content in representing financial and/or medi-
cal data can be even more valuable depending upon the
manner (legal or illegal) in which it is used. For example,
unsecured financial data can be used in furtherance of such
illegal activities as insider trading.

Give the economic value associated with digital content,
various legal regimes and technological apparatus and meth-
ods have been devised to protect this content during storage
and/or transmission. For example, these legal regimes
include copyright law (e.g., 17 USC et seq.), securities law
(e.g., Sarbanes-Oxley Act (SOX)), and a host of other legal
regimes (e.g., Health Insurance Portability and Accountabil-
ity Act (HIPAA)).

Copyright law has been devised to provide an economic
incentive for individuals to produce such things as the
aforementioned music and movies by protecting these indi-
viduals’ ownership rights in these artistic expressions. These
protections also extend to cover other forms of digital
content such as video games, computer code, pictures and
other types of expressive works. Copyright law also pro-
vides various disincentives to prevent individuals from
stealing or pirating these works. These disincentives come in
the form of various types of criminal and civil liability
associated with the illicit use or piracy of this digital content.

In general copyright owners have the right to reproduce
digital content (i.e., make copies), the right to make deriva-
tive works, the right to distribute copies, the right to perform
works publicly, and the right to display works publicly.
These rights, however, are typically balanced against what

20

25

40

45

60

65

2

are called the “Fair Use” rights of those individuals who
purchase a license to these copyrighted works. Under the
Doctrine of Fair Use, persons holding a license to a copy-
righted work are free to, among other things, make copies of
the work for personal, non-economic purposes. Often times,
however, the law must seek a balance between the copy-
rights of a particular copyright owner, and the Fair Use
rights of a licensee.

In addition to the above described legal regimes utilized
to protect digital content, various technological apparatus
and methods have been devised to protect this content.
Typically, these apparatus and methods relate to various
encryption techniques that are used to protect this digital
content.

Encryption is the process of obscuring information to
make it unreadable without special knowledge. While
encryption has been used to protect communications for
centuries, only organizations and individuals with an
extraordinary need for secrecy have made use of it. Encryp-
tion protects information, such as digital content, by taking
this content, known as plain text, and converting it into
cipher text or encrypted text. The cipher text is typically
generated using one of many mathematical algorithms (see,
e.g., RSA (Rivest, Shamir and Adelman), DES (Data
Encryption Standard), AES (Advanced Encryption Stan-
dard)). The process of converting the encrypted text back
into plain text is known as decryption. Central to the
encryption and decryption process is the use of various keys
to encrypt and decrypt the digital content. These keys are
typically mathematical values that are plugged into an
algorithm and used to encrypt or decrypt digital content.
Once a piece of digital content is encrypted it is, in a sense,
encapsulated in a shell of numeric values that give the
appearance that the digital content is in fact random and
meaningless. Typically, this shell is made up of ASCII,
Uni-code, or Binary values.

The algorithms used for encryption and decryption can be
broken down into two flavors. Symmetric key algorithms,
such as the above referenced DES and AES, use one secret
or private key to encrypt and decrypt digital content. Asym-
metric key algorithms, such as RSA, use two keys; a public
and a private key, where the public key is used in encrypt
digital content whereas the private key is used to decrypt
digital content. These two approaches to encryption also
vary in that systems employing an asymmetric key algo-
rithm may use a third party (e.g., a key server) to verify the
validity of a particular public key, whereas systems employ-
ing symmetric key algorithms do not use a third party
verifier. Accordingly, systems employing an asymmetric
system are known as a tethered systems, while systems
employing a symmetric system are known as an un-tethered
systems.

In some systems, a hybrid of symmetric and asymmetric
encryption is employed, a system known as a Hybrid-Crypto
system. Under this system, a piece of digital content may be
encrypted using a symmetric key algorithm, which, in turn,
is then encrypted using an asymmetric key algorithm. Alter-
natively, the public key may be used as a signature to verify
the identity of the requestor of content.

A factor used in determining the strength or effectiveness
a particular system of encryption is what is known as the key
length (i.e., the key size). Specifically, the key size is the
measure of the number of possible keys which can be used
in a key algorithm. More to the point, the above described
keys are typically in the form of a Binary value. The
potential size of this Binary value will at one level dictate the
effectiveness of the encryption system. The relationship

US 7,237,268 B2

3

between key-length size and the effectiveness of a system of
encryption is better understood if one examines the various
methods used to defeat a system of encryption.

Given the value of the digital content protected by the
above described systems of encryption, various methods
have been devised by unscrupulous persons to defeat the
encryption protections afforded this digital content. The
most basic method devised to defeat an encryption protec-
tion is known as a “Brute Force Attack.” In this form of
attack, a party will try every possible key value in an attempt
to eventually pick the correct key value. The success of such
an attack is only limited by the computing power and
computational complexity of the application used to engage
in the attack. Put another way, the success or failure of a
Brute Force Attack is proportional to the speed of the
computer and application employed in the attack. Given the
relationships between computing power, computational
complexity and the success of a Brute Force Attack, very
large key values (e.g., 128 bit or 2'*® key values) are
typically used to defeat a Brute Force Attack. Other types of
attacks used against encrypted digital content can include
“Chosen-Plain-Text Attacks” and “Known-Plain-Text
Attacks,” just to name a few.

One problem that is common to the above referenced
attacks is determining whether the characters revealed after
engaging in an attack are the sought after plain text, or
whether the characters are encrypted text. That is, when one,
for example, gets back the value “the”, after mounting such
an attack, is this actual plain text or is it encrypted text? This
is particularly a problem for Chosen-Plain-Text Attacks and
Known-Plain-Text Attacks where a comparison is made
between a known plain text value and the encrypted text to
measure the success of an attack. The success of such an
attack is dependent on the ability of the person who is
engaging in such an attack to have readily available the
entire encrypted digital content that he/she is seeking to
decrypt. Put another way, the success or failure of an attack
typically can only be determined when the attack results are
analyzed within the context of the entire piece of digital
content.

One practical embodiment of these encryption techniques
is Digital Rights Management (DRM) techniques and
related software. Generically speaking DRM is an umbrella
term referring to any of several technical methods used to
control or restrict the use of digital content and media
containing this content. For example, some DRM software
and techniques restrict the ability of a licensee to copy a
piece of digital content. And again, some DRM software and
techniques prevent certain types of digital content (e.g.,
music or video) as embodied in a particular type of media
(e.g., a CD or DVD) from being played on a particular type
of device (e.g., a personal computer). As with the above
described copyright regime, the challenge to DRM technol-
ogy is to balance the copyrights of the author of an expres-
sive work against the Fair Use rights of the licensee. Put
another way, while it is technologically feasible to, for
example, prevent someone from making a copy a piece of
digital content, this technological ability should not be used
to infringe on a licensee’s right to make a copy for personal
use (i.e., their Fair Use rights).

DRM systems are employed to protect digital content
(e.g., music) that is distributed over computer networks, or
online over the Internet. The susceptibility of, for example,
digital content in the form of digital audio to unauthorized
copying, and the ability to create perfect duplicates, raises
the specter of even more significant losses to the music
industry, and has been the single greatest factor in the music

20

25

40

45

60

65

4

industry’s reluctance to make music available for purchase
over the Internet. Thus, a distribution system using a com-
puter network must be demonstratively secure from a large
variety of attacks, including those described above, and
misuses in order to preserve the music owner’s intellectual
property rights, including copyrights.

At least three types of risks are present in the distribution
of music over a computer network. First, there is a consid-
erable security risk in simply maintaining digital content in
a computer system connected to public networks such as the
Internet for access by consumers. For example, in order to
effectively enable purchasers to review and purchase digital
content, the content distributor’s computer system storing
such content must be networked. However, given the com-
mercial value of such digital content, whether audio data,
video data, software, financial documents or the like, such
sites would be likely targets of computer-based attacks.
Further, the very presence of an online commerce system is
itself an inducement to crackers to attempt to break the
security controls of such a system and gain access thereto.
Thus, an online distribution system for digital content must
be secure from such direct attacks. Further, if the online
distribution system is compromised, it is desirable that the
underlying content itself be secure against unauthorized
copying, distribution, display, etc.

Additionally, the protocols and transmission mechanisms
by which an online digital-content distribution system deliv-
ers content to a legitimate purchaser must also be secure, to
prevent unauthorized users from intercepting deliveries of
the digital content over the network.

Finally, once the digital content has been delivered to a
user, it must be made secure against unauthorized duplica-
tion by the user or by others.

These constraints on a digital-content distribution system
are in conflict with many of the features consumers want in
terms of flexibility and ease of use. In particular, with regard
to the purchase of audio data, such as songs and related
media (e.g., the lyrics, graphics, liner notes which typically
accompany conventional retail forms of audio), consumers
want to be able to sample audio products prior to purchasing.
It is desirable for such an online music-distribution system
then to provide some mechanism by which users can play
limited portions of songs and view related media without
having to purchase the song. In addition, a consumer should
be able to pass on preview music to other potential new
customers.

Purchasers of music in traditional forms such as CDs or
cassettes are accustomed to simple, easy to use consumer
devices, such as portable CD players or tape players. For the
successful distribution of music over the Internet, the secu-
rity requirements must not unduly interfere with consumers’
ease of use of the system. A consumer should be able to
purchase and play back audio easily and securely. However,
the security measures, particularly the encryption mecha-
nisms, should make the purchased audio unusable outside of
the specific applications or devices designed to cooperate
with the distribution or network system.

Consumers are accustomed to being able to play music
purchases anywhere they can carry a CD and CD player.
Consumers will expect similar portability when purchasing
digital media over the Internet. Accordingly, a desirable
online music distribution system should allow a consumer to
play back purchased audio not merely on a single computer,
but on any platform equipped with an appropriately licensed
playback application or device and the licensee’s personal
identification. In short, a DRM system must be able to
protect digital content and the rights of its authors, but at the

US 7,237,268 B2

S

same time allow for those who purchase such content to
exercise their Fair Use rights.

The present invention addresses some of the above
described problems. Specifically, it allows for an apparatus,
system and method to securely encrypt digital content, but
at the same time it allows for persons who use, or are
licensees of this content to be able to exercise their Fair Use
rights.

SUMMARY OF THE INVENTION

The present invention provides for a method, system and
computer-readable media for shredding, encrypting, storing
and transmitting digital content (i.e., Managed/Secured File
Transfer) between computer systems arranged in a server-
client or peer-to-peer relationship. From a security perspec-
tive the present invention is advantageous. First, by both
shredding and, in some embodiments, separately encrypting
each shredded piece of digital content this, in effect, creates
multiple layers of encryption that a cracker or other unscru-
pulous person must get through to fully decrypt the content.
Moreover, by both shredding and, in some embodiments,
separately encrypting each shredded piece of digital content,
this lessens the likelihood that the encryption protection can
be defeated using variants of, for example, a Plain Text
Attack. This is true due to the fact that the digital content that
is the subject of the attack cannot be compared to other
pieces of content encrypted with the same private key or
public key value. In many cases, the success of a Plain Text
Attack depends on the ability to make this comparison. From
a DRM perspective, the present invention is advantageous
because rather than taking a one-size-fits-all approach, the
licensee’s rights can be tailored to meet the user’s (i.e., the
person who shreds and encrypts a file) needs, thus enabling
a licensor to observe the Fair Use rights of the licensee.

In some embodiments, the present invention provides a
method for handling shredded and encrypted digital content
that includes sending a request to a server computer system
for a file that has been organized as one or more pieces of
the shredded and encrypted digital content in a database
associated with the server, receiving the content from the
server into a client computer system, sorting the received
content from the server in a buffer residing in the client
computer system, decrypting the sorted received content
using a decryption algorithm, and forwarding the decrypted
sorted received content from the buffer to another applica-
tion.

In some embodiments, the present invention provides an
apparatus for handling shredded and encrypted digital con-
tent that includes: means for sending a request to a server
computer system for a file that has been organized as one or
more pieces of the shredded and encrypted digital content in
a database associated with the server, means for receiving
the content from the server into a client computer system,
means for sorting the received content from the server in a
buffer residing in the client computer system, means for
decrypting the sorted received content using a decryption
algorithm, and means for forwarding the decrypted sorted
received content from the buffer to another application.

In some embodiments, the present invention provides a
system for handling shredded and encrypted digital content.
This system includes a client computer having a transmitter
that sends a request to a server for digital content that has
been organized as one or more pieces of shredded and
encrypted data and that is stored in a database associated
with the server, a receiver that receives the shredded and
encrypted digital content from the server into the client

10

20

25

40

45

60

65

6

computer system, a sorter that sorts the received digital
content, a decryptor that decrypts the sorted digital content
using a decryption algorithm, a buffer, and an assembler that
assembles the decrypted digital content into the buffer.

Some embodiments of the invention include computer-
readable media having executable instructions stored
thereon for causing a suitable programmed central process-
ing unit to handle shredded and encrypted digital content by
performing a method that includes: sending a request to a
server computer system for digital content that has been
organized as one or more pieces of the shredded and
encrypted digital content in a database associated with the
server, receiving the content from the server into a client
computer system, sorting the received content from the
server in a buffer residing in the client computer system,
decrypting the sorted received content using a decryption
algorithm, and forwarding the decrypted sorted received
content from the buffer to another application.

Some embodiments of the invention include a method for
handling shredded and encrypted digital content, wherein
the method includes obtaining a dataset that includes digital
content, shredding the dataset into a plurality of shreds,
encrypting each of the shreds using one of a plurality of
encryption keys and storing each encrypted shred into a
database, receiving a request from a client for the digital
content that has been organized as a plurality of pieces of the
shredded and encrypted digital content in the database, and
transmitting the content from the database to the client.

In some embodiments, the present invention includes
computer-readable media having stored thereon a first data
structure comprising two or more of the following:

(a descriptor that includes a unique value used to deter-

mine a record identity within a table,

a descriptor including a join value,

a descriptor that includes the number of chunks in each

record,

a descriptor representing a predetermined size for each

chunk, and

a descriptor that includes actual shredded and encrypted

content derived based on the descriptor that includes
the predetermined size for each chunk).

In some embodiments, the present invention includes
computer-readable media having stored thereon a second
data structure comprising two or more of the following:

(a descriptor that includes a value representing a name of

a content publisher,

a descriptor that includes a value representing a URL of

an originating server,

a descriptor that includes a value representing a name of

the originating server,

a descriptor that includes a value representing whether or

not content may be edited,

a descriptor that includes a value representing whether a

content item may be copied,

a descriptor that includes a value representing whether a

content item may be viewed,

a descriptor that includes a value representing whether a

content item may be forwarded to another user,

a descriptor that includes a value representing whether a

content can be shared with others for read-only usage,

a descriptor that includes a value representing whether a

content item may be placed on removable physical
media,

a descriptor that includes a value representing the number

of times a content item can be recorded to removable
media,

US 7,237,268 B2

7

a descriptor that includes a value representing whether a

content item may be moved onto a portable device,

a descriptor that includes a value representing whether a

content item is on-loan,

a descriptor that includes a value representing whether a

content item is restricted until purchase,

a descriptor that includes a value representing when a

demonstration usage expires, and

a descriptor that includes a value representing whether a

user must login before accessing a content item).

In some embodiments, the present invention includes
computer-readable media having stored thereon a first data
structure comprising two or more of the following:

(a descriptor that includes a value representing unique file

identifier,

a descriptor that includes a value representing a file name

and extension,

a descriptor that includes a value representing date and

time when a record was created,

a descriptor that includes a value representing a total size

of the file,

a descriptor that includes a value representing the name of

a target file,

a descriptor that includes a value representing a file

extension,

a descriptor that includes a value representing a number of

chunks required to completely shred the target file,

a descriptor that includes the number of chunks within a

record,

a descriptor that includes a predetermined size for each

chunk, and

a descriptor that includes data having actual shredded and

encrypted content derived based on the descriptor that
includes the predetermined size for each chunk and the
descriptor indicating the file size).

In some embodiments, the present invention includes
computer-readable media having executable file-transfer
instructions stored thereon for causing a suitable pro-
grammed central processing unit to handle shredded and
encrypted digital content by performing a method that
includes: generating in a graphical user interface an appli-
cation window having a window frame and a plurality of
stiles to define a plurality of panes within the frame, dis-
playing in a first one of the panes a user selectable index of
a plurality of physical media, displaying in a second one of
the panes first selected physical media from the user select-
able index, and displaying in a third one of the panes second
selected information for a database.

In some embodiments, the present invention includes
computer-readable media having executable media-player
application code stored thereon for causing a suitable pro-
grammed central processing unit to handle shredded and
encrypted digital content by performing a method compris-
ing: generating in a graphical user interface an application
window having a window frame and a plurality of stiles to
define a plurality of panes within the frame, displaying in a
first one of the panes user selectable specific track informa-
tion, displaying in a second one of the panes user generated
track list information, and displaying in a third one of the
panes specific track information.

In some embodiments, the present invention includes
computer-readable media having executable server applica-
tion code stored thereon for causing a suitable programmed
central processing unit to handle shredded and encrypted
digital content by performing a method comprising: gener-
ating in a graphical user interface an application window
having a window frame and a plurality of stiles to define a

10

15

20

25

35

40

45

60

65

8

plurality of panes within the frame, displaying in a first one
of'the panes two or more of the following simultaneously: (a
user-selectable general settings button, a user-selectable
protocols and network settings button, a user-selectable
alias-management button, a user-selectable user-manage-
ment button, a start button, a new session check box, refresh
rate text box with an incrementing value, a server name text
box, a stop button, a padlock icon, and a running icon).

Functionality Suite Summary

In some embodiments, the present invention provides a
method for handling shredded and encrypted digital content
comprising: manipulating digital content in the form of text
with a word processing module, manipulating digital content
in the form of numeric values and text with a spreadsheet
module, manipulating digital content in the form of photos
with a photo management module, manipulating digital
content in the form of messages between users with a
messaging module, and manipulating digital content to be
posted for use by multiple users with a bulletin board
module.

In some embodiments, the present invention provides
computer-readable media having executable instructions
stored thereon for causing a suitable programmed central
processor unit to perform a method comprising: manipulat-
ing shredded and encrypted digital content in the form of
text with a word processing module, manipulating shredded
and encrypted digital content in the form of numeric values
and text with a spreadsheet module, manipulating shredded
and encrypted digital content in the form of photos with a
photo management module, manipulating shredded and
encrypted digital content in the form of messages between
users with a messaging module, and manipulating shredded
and encrypted digital content to be posted for use by
multiple users with a bulletin board module.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic of a computer system 100.

FIG. 2 is a schematic of a plurality of computer systems
100 connected via a computer network 200.

FIG. 3 is a schematic of the shredding and encryption
process 300.

FIG. 4 is a schematic describing a data structure 400.

FIG. 5 is a schematic describing a data structure 500.

FIG. 6 is a schematic depicting a server-client network
600 between computer systems.

FIG. 7 is a schematic depicting a peer-to-peer network
700 between computer systems.

FIG. 8 is a schematic depicting the start-up options of a
server GUI 800.

FIG. 9 is a schema of a general configuration GUI 900 for
a server.

FIG. 10 is a schema depicting a protocol and settings GUI
1000 for a server.

FIG. 11 is a schema depicting a server statistics GUI 1100.

FIG. 12 is a schema of an alias management GUI 1200.

FIG. 13 is a schema of an alias management GUI 1300,
and, in particular, where a button 1201 is executed and new
window or frame is opened for the purpose of creating a new
alias.

FIG. 14 is a schema of an alias management GUI 1400,
and, in particular, where a button 1203 is executed and new
window or frame is opened for the purpose of deleting an
alias.

FIG. 15 is a schema of a user management GUI 1500, and,
in particular, where a button 810 is executed and new

US 7,237,268 B2

9

window or frame is opened for the purpose of setting
privileges (e.g., admin, read, insert, update, or delete) via
various check boxes 1501.

FIG. 16 is a schema of a user management GUI 1600,
wherein new user information can be inputted.

FIG. 17 is a schema of a user management GUI 1700,
wherein user information to be deleted can be inputted.

FIG. 18 is an application-level schematic of the shred-
ding, encryption and storage process 1800 utilizing the
Content Management Module 1801, and the encryption
module or engine 1803.

FIG. 19 is a schematic of an un-tethered system 1900 of
encryption.

FIG. 20 is an application-level schematic of the un-
tethered system 2000 and in particular the sending portion of
the system.

FIG. 21 is a schematic of a tethered system 2100 of
encryption.

FIG. 22 is a schematic providing an application-level
view of the tethered system 2200 and in particular the
sending portion of the system.

FIG. 23 depicts a Hybrid-Crypto system 2300 that
employs both asymmetric and symmetric encryption tech-
niques.

FIG. 24 depicts a file transfer GUI 2400 as it would appear
in a window frame on a computer monitor 110.

FIG. 25 depicts a player application GUI 2500 and the
associated functionality.

FIG. 26 is a schema of a player application GUI 2600 with
added functionality to enable the user of the player appli-
cation to make queries of general information regarding the
network to which it is logged into.

FIG. 27 is a schema of the resulting window 2701 and
associated home GUI 2700 that is generated when a home
button 2602 is executed.

FIG. 28 is a schema of the resulting window 2801 and
associated GUI 2800 that is generated when a user button
2604 is executed.

FIG. 29 is a schema of a GUI 2900 that is generated when
an activity button 2605 is executed.

FIG. 30 is a schematic of a GUI 3000 displayed as a
window 3001 that results from a user executing an incident
button 2606.

FIG. 31 depicts a schematic of a client-server relationship
3100.

FIG. 32 is a schematic providing an application-level
view 3200 of the database calling modules.

DESCRIPTION OF EMBODIMENTS

In the following detailed description of the preferred
embodiments, reference is made to the accompanying draw-
ings that form a part hereof, and in which are shown by way
of illustration specific embodiments in which the invention
may be practiced. It is understood that other embodiments
may be utilized and structural changes may be made without
departing from the scope of the present invention.

The leading digit(s) of reference numbers appearing in the
Figures generally corresponds to the Figure number in
which that component is first introduced, such that the same
reference number is used throughout to refer to an identical
component which appears in multiple Figures. Signals and
connections may be referred to by the same reference
number or label, and the actual meaning will be clear from
its use in the context of the description.

In some embodiments, a digital processing system or
computer system includes a processor, which may represent

20

25

35

40

45

50

60

65

10

one or more processors and may include one or more
conventional types of such processors (e.g., x86, x86-64),
such as an AMD processor, or Intel Pentium processor or the
like. A memory is coupled to the processor by a bus. The
memory may be a dynamic random access memory
(DRAM) and/or may include static RAM (SRAM). The
processor may also be coupled to other types of storage
areas/memories (e.g., cache, Flash memory, disk, etc.),
which could be considered as part of the memory or separate
from the memory.

The bus further couples the processor to a display con-
troller, a mass memory or some type of computer-readable
media device, the modem or network interface, and an
input/output (I/0) controller. Computer-readable media may
include a magnetic, optical, magneto-optical, tape, and/or
other type of machine-readable media/device for storing
information. For example, the computer-readable media
may represent a hard disk, a read-only or writeable optical
CD, etc. The display controller controls in a conventional
manner a display, which may represent a cathode ray tube
(CRT) display, a liquid crystal display (LCD), a plasma
display, or other type of display device. The /O controller
controls 1/O device(s), which may include one or more
keyboards, mouse/trackball or other pointing devices, mag-
netic and/or optical disk drives, printers, scanners, digital
cameras, microphones, etc.

In some embodiments, the present invention may be
implemented entirely in executable computer program
instructions which are stored on a computer-readable media
or may be implemented in a combination of software and
hardware, or in certain embodiments, entirely in hardware.

Embodiments within the scope of the present invention
include computer-readable media for carrying or having
computer-executable instructions or data structures stored
thereon. Such computer-readable media may be any avail-
able media, which is accessible by a general-purpose or
special-purpose computer system. By way of example, and
not limitation, such computer-readable media can comprise
physical storage media such as RAM, ROM, EPROM,
CD-ROM or other optical-disk storage, magnetic-disk stor-
age or other magnetic-storage devices, or any other media
which can be used to carry or store desired program code
means in the form of computer-executable instructions,
computer-readable instructions, or data structures and which
may be accessed by a general-purpose or special-purpose
computer system. This physical storage media may be fixed
to the computer system as in the case of a magnetic drive or
removable as in the case of an EEPROM device (e.g., flash
memory device).

FIG. 1 is a schematic of a computer system 100 contain-
ing a central processing unit (CPU) 107, connected via
various buses 115 to a RAM module 108, a storage control-
ler 106, and an I/O controller 109. The storage controller 106
is operatively connected to various types of physical media
via various buses 115. These physical media include CDs,
CD-R, CD-RWs, DVD-Rs, or DVDs using one or more
optical drives 102, a disk or diskette using one or more
floppy drives 103, magnetic tape using one or more tape
drives 104, one or more hard drive or magnetic drives 105,
and a removable storage media (e.g., a flash memory device)
using a Universal Serial Bus (USB) 101. In some embodi-
ments, the removable storage media includes a universal
mass storage device, or USB device, that is typically
inserted into a USB 101 through which data and/or appli-
cations are uploaded and/or downloaded onto the USB
device (i.e., a flash memory device such as a key drive,
thumb drive or some other flash memory device as is known

US 7,237,268 B2

11

in the art). (See USB Complete: Everything You Need to
Develop Custom USB Peripherals 2" Edition, by Jan Axel-
son, Lakeview Research, 2001.) In some embodiments, an
1/O controller 109 is operatively connected to various 1/0O
devices via various buses 115. In some embodiments, these
devices include to a monitor 110, which, in some embodi-
ments, is a CRT, LCD or some other type of display. In some
embodiments, a printer 111 is connected to the /O control-
ler. In some embodiments, these devices additionally include
a keyboard 113, which, in turn, is connected to a mouse 112.
In some embodiments, an Internet 114 is connected to the
1/O controller via a modem, Ethernet port, or some other
connection known in the art. (See Embedded Ethernet and
Internet Complete, by Jan Axelson, Lakeview Research,
2003.) In some embodiments, a local area network (LAN),
or wide area network (WAN) may be used to supplement or
in lieu of an Internet 114.

In some embodiments, when information is transferred or
provided over a network or another communications con-
nection (e.g., either hardwired, wireless, or a combination of
hardwired or wireless) to a computer system, the connection
is properly viewed as a computer-readable media. Thus, any
such connection is properly termed a computer-readable
media. Combinations of the above should also be included
within the scope of computer-readable media. Computer-
executable or computer-readable instructions comprise, for
example, instructions and data which cause a general-pur-
pose computer system or special-purpose computer system
to perform a certain function or group of functions. The
computer-executable or computer-readable instructions may
be, for example, binaries, or intermediate format instructions
such as assembly language, or even source code.

In this description and in the following claims, a computer
system is defined as one or more software modules, one or
more hardware modules, or combinations thereof, that work
together to perform operations on electronic data. For
example, the definition of computer system includes the
hardware modules of a personal computer, as well as soft-
ware modules, such as the operating system of the personal
computer. The physical layout of the modules is not impor-
tant. A computer system may include one or more computers
coupled via a network. Likewise, a computer system may
include a single physical device (e.g., a mobile phone or
Personal Digital Assistant (PDA)) where internal modules
(e.g., a processor and memory) work together to perform
operations on electronic data.

In some embodiments, the invention may be practiced in
network computing environments with many types of com-
puter system configurations, including hubs, routers, wire-
less access points (APs), wireless stations, personal com-
puters, laptop computers, hand-held devices, multi-
processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, main-
frame computers, mobile telephones, PDAs, pagers, and the
like. The invention can also be practiced in distributed
system environments where local and remote computer
systems, which are linked (i.e., either by hardwired, wire-
less, or a combination of hardwired and wireless connec-
tions) through a network, both perform tasks. In a distributed
system environment, program modules may be located in
both local and remote memory-storage devices.

In some embodiments, Internet refers to a network of
networks. Such networks may use a variety of protocols for
exchange of information, such as TCP/IP, ATM, SNA, SDI,
etc, and may be used within a variety of topologies or
structures. The physical connections of the Internet and the
protocols and communication procedures of the Internet

20

25

40

45

60

65

12

(e.g., the TCP/IP protocol stack) are well known to those in
the art and are collectively referenced herein as the “Trans-
port Layers.” The Transport Layers provide such connec-
tions using various protocols (TCP/IP and UDP) over private
and public network infrastructures, and will be used to
define the method of communication between computer
systems. Access to the Internet is typically provided by
Internet service providers (ISPs). Access to the Internet via
a computer system is typically by way of two or more
computers connected in a client-server configuration. A
client device or client will be used to reference any computer
system that a user may sit at, touch, or hold. A server device
will be used to refer to a remotely located computing system,
which may be accessed by users through a client application
or device via a LAN, WAN or Internet. Users on client
systems, such as the client computer systems, generally
obtain access to the Internet through an ISP. Access to the
Internet may facilitate transfer of information (e.g., email,
text files, digital-content files, etc.) between two or more
computer systems, such as the client computer system
and/or a server computer system (see e.g., a web server, mail
server or the like). For example, one or more of the client
computer systems and/or the Web server may provide digital
content (e.g., video and audio, or video, or audio) to one or
more of the client computer systems and/or the Web server.
Such digital content may be provided in response to a
request.

FIG. 2 is a schematic of a plurality of computer systems
100 connected via a computer network 200. The various
types of computer systems pictured include: a server 201,
network PC 202, desktop PC 203, laptop computer 206,
PDA 207, main frame computer 208, minicomputer 209, and
network server 210. These various computer systems can be
operatively connected to one another via an Internet 204, a
wireless station 205 and/or a WAN or LAN 211 just to name
a few. The wireless station 205 includes a system imple-
menting IEEE 802.11, a global system for mobile commu-
nications (GSM), a code division multiple access (CDMA)
system, or some other system for implementing wireless
communications. These various computer systems may
communicate via certain transport protocols such as TCP/IP,
UDP, ATM or one of the other above described protocols.

Overview

In some embodiments, the present invention is a method
and system for the shredding, encryption, storage, and
transmission and reassembly of digital content. Individual
digital-content files are shredded using a predetermined
shred size, resulting in multiple detailed records. Each of
these multiple detailed records or pieces is then, in turn,
encrypted with a separate symmetric or asymmetric key
value. Once encrypted, the user privileges are established
and the encrypted pieces are then separately stored into a
database table. These encrypted pieces can then be retrieved,
decrypted, and reassembled into the original piece of digital
content and accessed via a viewer or player application that
can access digital content formatted in TIFF, GIF, TXT, PDF,
DOC, AVI, MPEG, JIPEG, MP3, WAV, AAC or some other
format known in the art. Alternatively, these encrypted
pieces can be transmitted over a computer network (e.g.,
LAN, WAN, or Internet) from a first computer to a second
computer, where the first and second computers are config-
ured in a server-client relationship, or in a peer-to-peer
relationship. Once these encrypted pieces are received they
can be decrypted and played back by a viewer or player
application, and/or stored in their encrypted form into one or
more database tables. In some embodiments, the server and
the client applications are stand-alone applications. In some

US 7,237,268 B2

13

embodiments, the database is an embedded database pack-
aged with the server and/or client application. In some
embodiments, the server and/or client application resides or
sits on top of an operating system such as Windows™,
Linux™ or Unix just to name a few.

Digital Content Shredding, Encryption, and Storage

In some embodiments, individual digital-content files are
shredded using a predetermined shred size, resulting in
multiple detailed records. This shred size can be manually or
automatically determined. Each of these multiple detailed
records or pieces is then, in turn, encrypted with a separate
symmetric or asymmetric key value as is known in the art.
(See PGP: Pretty Good Protection, by Simson Garfinkel,
O’Reilly & Associates, Inc., 1995.) The shred size can be
manually or automatically determined, and is typically
based upon factors such as the application and data require-
ments (e.g., an application reading an MPEG file might
require a large shred size as oppose to an application reading
a JPEG file). Similarly, the size of the key value can be
manually or automatically predetermined, and is typically
based upon empirical testing and/or modeling relating what
key size is most effective at withstanding an attempt to crack
or break the protective encryption shell.

Once shredded and encrypted, the data is stored as data-
base tuple or record into one or more database tables. In
some embodiments, this database is an embedded database,
while in other embodiments a separate database platform or
application is used as is known in the art. In some embodi-
ments, an embedded database is a database that is packaged
with or within an application and is not a part of a separate
database platform. In some embodiments, the embedded
database is implement-and-forget in nature. That is, once
implemented it requires little or no database administration.
In some embodiments, the database tables are typically
created using a Structured Query Language (SQL), and are
accessed, searched, and information selected or retrieved
using SQL or some similar language used to create and
implement relational or object relational database schemas
as are known in the art. (See Database System Concepts 37
Edition, by Abraham Silberschastz, Henry K. Korth, & S.
Sudarshan, McGraw-Hill, 1997.) A database application or
platform is used, in some embodiments, including
MySQL™, SQLServer™, Access™, Oracle™, or the like.
In some embodiments, the record is stored into a series of
binary large object fields (BLOB), while in other embodi-
ments the record is stored into a character large object
(CLOB) field, or some other data type and associated field
known in the art (e.g., string, float, or integer just to name
a few). (See The Fundamentals of Database Systems 3"
Edition, by Remez Elmasri & Shamkant B. Navathe, Addi-
son-Wesley, 2000.) For each piece of shredded and
encrypted data, there is an associated Header record and
Shred record. Generally speaking, in some embodiments,
the Header record describes the actual attributes of the data,
whereas the Shred record contains the actual data itself. The
use of the Header and Shred records is described in the
example provided below.

In some embodiments, an extensible-markup language
(XML) and associated schema is used to tag and store the
encrypted data as a database record as is known in the art.
(See XML for the World Wide Web, by Elizabeth Castro,
Peachpit Press, 2000; Data on the Web: From Relations to
Semistructured Data and XML 1°7 Edition, by Serge Abite-
boul, Peter Buneman, & Dan Suciu, Morgan Kaufmann,
1999.) In this embodiment, the various schema types,
whether built in or custom defined, will reflect the data

10

15

20

25

30

35

40

45

50

55

60

65

14

structures and fields depicted below for the Header Data
table and Shred Record Data table.

FIG. 3 is a schematic of the shredding and encryption
process 300. Depicted is a target file 301 that is loaded into
an embodiment of the present invention referenced herein as
an application 302. In some embodiments, this target file 301
can be loaded by the present invention via a drag-n-drop
method common to many graphical user interfaces (GUIs),
or through a command line call to load the target file. Once
loaded, in some embodiments, the target file is shredded into
portions or chunks of data of a predetermined size through
a shredding process 303. Once shredded, the resulting
chunks of data are encrypted by a process 304 using one or
more distinct private encryption keys. Once shredded and
encrypted by steps 303 and 304, the chunks of data are saved
to a Header Data table 305, and a Shred Record Data table
306, representing various database tables.

In some embodiments, a target file (e.g., “EXAM-
PLE.PDF”) is brought into the system through a drag-n-drop
feature, or by selection through a dialog box, screen, win-
dow or other types of user interfaces that are commonly
known in the art. Once dropped into the application, various
file attributes are extracted, which may include: file name,
file date, file size, and/or the original location/path of the
target file. Once these attributes are extracted, a Header
record is created for that file and placed into a Header record
or table in a database. In some embodiments, the Header
table will have the following basic data fields and structure:

FileID: Integer, a value generated by the application to

assign a unique value to the digital content

Description: String, a value representing the target file

name and extension

Date: DateTime, a value representing the date and time

the record file was created

Size: Double, the total size of the file in kilobytes,

megabytes or some other value

FileName: String, a value representing the name of the

target file

FileExtension: String, a value representing the file exten-

sion or file type (e.g., PDF, MP3, JPEG, MPEG etc.)

ChunkCount: Integer, the number of chunks required to

completely shred the target file

ContentCount: Integer, the number of Chunks within each

record

Content: BLOB, afield containing the actual shredded

content

ChunkSize: Double, a value representing a predetermined

or constant size for each chunk

The above mentioned file attributes will then be used to
populate these data fields. In addition to these fields, addi-
tional fields may be used depending upon the requirements
of'the user. These additional fields may be determined based
upon empirical testing and/or modeling.

With regard to data for the field titled ChunkSize this data
value is determined automatically, or by a user. Once deter-
mined, this value is then used to calculate the number of
Chunks required to process a target file. In some embodi-
ments, a calculation is made using the following Chunk-
Count formula: ChunkCount=Round(FileSize/ChunkSize).
The Round function rounds the quotient to the nearest
integer value; thereby compensating for file sizes that need
only use partial amounts of a field or fields. In some
embodiments, various conversion factors are applied such
that if, for example, the FileSize is in megabytes (MB), then
the ChunkSize will be converted to megabytes (MB) from,
for example, kilobytes (kB) so as to allow for a commonality

US 7,237,268 B2

15

between the units of the numerator and denominator. These
conversion factors are well known in the art and will be
applied, in some embodiments, where the units of the
numerator and denominator are not the same. The resulting
ChunkCount value is then used to generate a series of data
shreds or chunks that will be used to populate the Content
field. In some embodiments, the Content field of the Header
record is populated with the first chunk of data from the
target file.

In some embodiments, the process of actually saving
these data shreds or chunks to a database is accomplished in
the following manner. First, once the ChunkSize and Chunk-
Count is determined using, in some embodiments, the above
disclosed method, a portion or chunk of the target file is read
directly from the target file into a buffer, or stream, that is
equal to or greater in size to the known ChunkSize. In some
embodiments, a buffer equal to, or greater in size than the
ChunkSize is implemented. This buffer, stream, or tempo-
rary stream is then encrypted using one or more of the
processes described below. Next, this encrypted buffer or
stream is then saved into the above described Content field
of the Header table and/or the Shred Record table described
below. This process continues iteratively or recursively until
the entire file is consumed. An iterative example of this
process is reflected in the following pseudo code:

While (not end of target file)

Read a ChunkSize portion of the target file into a stream
or buffer;

Encrypt the stream or buffer;

Place the stream or buffer into the Content field of the
Header Data table or file data table;

Assign a FileID to the record containing the Content field;
Get the next ChunkSize portion from the target file

A person skilled in the art using an object orient program-
ming language such as C++, C#™, Java™, Delphi™, or the
like would be able to implement this pseudo code.

In some embodiments, a method may be employed to use
variable chunk sizes for a single target file. This method may
employ the use of randomly generated ChunkSize values,
whereby the ChunkSize value is determined anew after each
encrypted stream or buffer containing a chunk is saved into
the Content field of a Shred record or Header table. In this
embodiment, a randomized ChunkSize value is subtracted
from the FileSize value and a running ChunkCount value
kept through each iteration or recursive movement. As with
the method outlined above, each of these chunks is stored
into a stream or buffer of a size equal to the ChunkSize,
encrypted, and ultimately saved into the above described
Content field of the Header table and/or the Shred Record
table described below. Once the target file is completely
consumed, the ChunkCount value is stored into the Chunk-
Count field of the Header table. An iterative example of this
process is reflected in the following pseudo code:

While (not end of target file)

ChunkCount plus one;

While(ChunkSize greater than remaining FileSize)
Assign the ChunkSize a random value using a Ran-

domizer function;

Subtract the ChunkSize from the FileSize and assign the
resulting value to the FileSize;

Read a ChunkSize portion of the target file into a stream
or buffer;

Encrypt the stream or buffer;

10

15

20

25

30

35

40

45

50

55

60

65

16

Place the stream or buffer into the Content field of the
Header Data table or file data table;

Assign a FileID to the record containing the Content field;

Get the next ChunkSize portion from the target file

A person skilled in the art using an object orient program-
ming language would be able to implement this pseudo
code.

In some embodiments, more than one chunk or shred may
be saved into the same Content field. In one such embodi-
ment, a first buffer or stream equal to, or greater in size than,
the first ChunkSize is generated and the shred or chunk from
the target file corresponding to this first ChunkSize is stored
therein. This buffer or stream is then encrypted using one or
more of the methods outlined below. Next, a second stream
or buffer is generated that is equal to, or greater in size than,
the first stream or buffer plus a second ChunkSize. A second
shred or chunk from the target file corresponding to the
second ChunkSize is then read from the target file and stored
along with the first encrypted stream or buffer into the
second buffer or stream. This second buffer or stream is then
encrypted, and, in some embodiments, stored into the Con-
tent fields of the Header table or Shred record. In the
alternative, additional shreds or chunks may be encrypted
and stored into an ever growing buffer or stream the size of
which can be determined by the user. In some embodiments,
this process of generating an ever growing encrypted buffer
or stream may continue iteratively or recursively until the
entire file is consumed. In some embodiments, this process
may continue iteratively or recursively until a predetermined
number of chunks have been placed into a particular buffer.
The ChunkSize used in this embodiment may be either the
above described constant or randomized value. An iterative
example of this process is reflected in the following pseudo
code:

While (not end of the target file)

Generate a buffer or stream of a size equal to the Chunk-
Size plus the previous encrypted buffer or stream;

Read a ChunkSize portion from the target file;

Assign the buffer or stream the extracted ChunkSize
portion of the target file and the the previous encrypted
buffer or stream;

Encrypt the buffer or stream

A person skilled in the art using an object orient program-
ming language would be able to implement this pseudo
code.

In some embodiments, the actual shredding and encryp-
tion of the chunks is performed by a Content Management
Module and an Encryption Engine described below.

As to the FileID field, in some embodiments, this field is
populated with a value unique to the Header table and each
individual record within this table. This value may be
automatically assigned by the database itself, or from a
routine published by the host application. In some embodi-
ments, the Description field is populated with the target file
name (e.g., “EXAMPLE”) and extension (e.g., “.PDF”). In
some embodiments, this is a meta-data field, which may be
changed by the user or application.

Iin some embodiments, the remainder of the file will be
processed into a Shred record table which has the following
base data fields and structure:

ChunkID: Integer, a unique value used to determine a

record’s identity within a table

FilelD: Integer, a value corresponding to the FileID value

in the Header file (i.e., a join value)

Content: BLOB, a field containing the actual shredded

content

US 7,237,268 B2

17

ContentCount: Integer, describing the number of chunks
contained in each record

ChunkSize: Integer, a value representing a predetermined
size (e.g., kilobytes, megabytes) for each chunk

An iterative or recursive method is used, in some embodi-
ments, to process the remainder of the file into the Shred
Record table whereby a chunk is read into the stream/buffer,
the stream is encrypted, the Content field is populated with
the encrypted stream data, and the FileID field is assigned
the value of the same field from the Header Data record. This
establishes a master-detail relationship between the two
records. The ChunkID field is assigned a value unique to the
Shred Record table within the host database. This value may
be automatically assigned by the database itself, or from a
routine published by the host application, and the chunk
record is posted to the Shred Record table. In some embodi-
ments, the purpose of the ChunkID value is to establish a
priority for the various pieces of shredded, encrypted content
that reflects the order of these pieces as they are read in from
the original target file. In some embodiments, the size of the
Content and ContentCount field in the Header Data record
can be varied.

In some embodiments, additional data fields and struc-
tures are envisioned. In still other embodiments, the Header
Data may contain an additional meta-data field for descrip-
tive purposes and searching. In some embodiments, these
meta-data fields and tags may be written in the aforemen-
tioned XML, using an associated XML schema.

FIG. 4 is a schematic describing a data structure 400,
including domains and attributes, populated with records
from a hypothetical file titled “EXAMPLE.PDF”. The afore-
mentioned shredding process 303 shreds files into Header
Data table 305 with the following table columns. In some
embodiments, a FileID 401 table column is depicted that
contains a value automatically generated by the application
to assign a unique value to the digital content to be shredded,
encrypted and stored. In the present example, an integer
value of one (1) has been assigned. In some embodiments,
a Description 402 table column is disclosed that contains a
string value reflecting the file name and extension. Here, the
string “EXAMPLE.PDF” has been stored. In some embodi-
ments, the column titled Date 403 holds a date type, as is
common to many database applications, relating to the date
on which the file was shredded, encrypted and stored. In
some embodiments, a string, CLOB or some other data type
known in the art can be used in lieu of the date data type. In
the present example, the date May 24, 2005 is the date the
file was created. In some embodiments, a Size 404 is
implemented whereby data relating to the size of the file to
be shredded, encrypted and stored is stored. In some
embodiments, this field will use data of a type integer,
double, float or some other type well known in the art. This
example depicts a file size of 8.18, where this size is
measured in kilobytes (kB). In some embodiments, the unit
of'size will be kilobytes (kB), whereas in other embodiments
the unit of size will be megabytes (MB), gigabytes (GB), or
terabytes (TB), or some other size known in the art. In some
embodiments, a FileName 405 field is used whereby a string
data type is implemented to represent the name of the file.
In the present case, the string “EXAMPLE” is stored into the
table. In still further embodiments, a FileExtension 406 field
is created, whereby a value of type string is stored reflecting
the extension type of the file be this a PDF, JPEG, MPEG or
the like. Here, a “PDF” file extension is stored. In some
embodiments, a ChunkCount 407 is used to save the number
of chunks into which a file is to be divided. In some

10

15

20

25

30

35

40

45

50

55

60

65

18

embodiments, this value is represented as an integer, or
some other data type known in the art. This ChunkCount
value is, in some embodiments, derived from the above
described ChunkCount formula. The present example uses a
ChunkCount of three (3). In some embodiments, a Content-
Count 408 is utilized whereby the number of chunks within
each record can be determined. Specifically, it is possible to
have more than one (1) chunks within each record such that
each record for a chunk could contain more than one chunk.
The present example has only one (1) chunk for each record.
In some embodiments, a Content 409 field is implemented
that contains the actual file content. In some embodiments,
this field is of type BLOB, CLOB or some other type well
known in the art. In some embodiments, this field will
contain the actual digital content represented as an object
with associated attributes and methods (i.e., a data object),
but in binary or character (e.g., ASCII, Uni-Code) form. In
some embodiments, these data objects will be protected with
an encryption shell. In some embodiments, this encrypted
shell will be created using symmetric or asymmetric encryp-
tion algorithms and techniques as is described below. In the
present example, a portion of the EXAMPLE.PDF file is
stored as a BLOB data object. In some embodiments, a
ChunkSize 410 field is utilized to determine the size of each
chunk into which the file is divided. In some embodiments,
ChunkSize 410 will use a field of type integer, double, float,
or some data type known in the art to store data. Moreover,
in some embodiments, the value in the ChunkSize will
represent kilobytes (kB) of digital content, whereas, in other
embodiments, the value will represent megabytes (MB),
gigabytes (GB), terabytes (TB), or some other size known in
the art. In the present example, a double value of 2.73 is
used, where this value is in kilobytes (kB). In this example,
the first record 411 is placed into the Header table 305.

While the first chunk of data is saved as a record into the
Header Data table 305, the remaining data are saved into a
Shred Record data table 306. This Shred Record table 306
has five (5) columns populated with records from a hypo-
thetical file titled “EXAMPLE .PDF”. In some embodiments,
a ChunkId 414 contains an integer value representing the
unique value of the record entry. In the present example, the
value zero (0) is assigned to the first record 419, whereas the
value one (1) is assigned the second record 420. These two
records correspond to the two remaining chunks of the three
(3) into which the “EXAMPLE.PDF” was divided. In addi-
tion to the ChunkId 414 column, a FileID 415, Content 416,
ContentCount 417 and ChunkSize 418 are provided, the
descriptions of which are provided above.

In some embodiments, additional data fields are placed
into Header record, fields relating to the privileges and
digital rights associated with the target file. These rights may
vary depending upon the application and file requirements.
In some embodiments, the following data fields may be used
to establish the digital rights of a particular target file:

Owner: String, is the name of the content publisher

SourceServerIP: String, address or URL of the originating

server

SourceServerName: String, name of the originating server

CanEdit: Boolean, determines if the content item may be

edited

CanCopy: Boolean, determines if the content item may be

copied

CanView: Boolean, determines if the content item may be

viewed

CanForward: Boolean, determines if the content item may

be forwarded to another user

US 7,237,268 B2

19

CanShare: Boolean, determines if the content item can be
shared with others for read-only usage

CanBurn: Boolean, determines if the content item may be
placed on removable media (e.g., CD-R, CD-RW,
DVD-R)

BurnCount: Integer, how many times can it be burned to
removable media

IsPortable: Boolean, determines if the content item may
be moved onto portable devices

CheckedOut: Boolean, determines if the content item is
on-loan

IsDemo: Boolean, determines if the content item is
restricted until purchase

Expires: Double, when the demo usage expires

LoginRequired Boolean, determines if the user must login
to the original server before accessing the content item

These various data fields can be used to set the privileges or
the digital rights of a user (e.g., the right to make a copy, the
right to distribute, the right to play on a certain device etc.).
In addition to these basic digital rights, in some embodi-
ments, other functionalities relating to digital rights can be
implemented via adding additional data fields including
data/time limitations, usage count restrictions, read-only
access, print rights and self-destruct functions. In some
embodiments, these rights are selected by the user prior to
the target files being shredded, and are applied once the first
chunk is created.

In some embodiments, each record has separate privilege
rights or use rights associated with it. These use rights allow
the individual who originally shreds and encrypts the digital
content to, in effect, determine such things as whether the
digital content may be copied, what types of devices and/or
applications may be used to play the digital content, how
many copies may be made of the digital content, and a host
of other privileges that relate to the Fair Use rights of the
licensee.

FIG. 5 depicts a data structure 500 populated with records
that are used within the Header Data table 305 to determine
digital rights associated with a particular record. In the
present example, record 411 has a number of digital rights
associated with it. For example, an Owner 501 value in the
form a string is set to determine what party or individual
published the content. Here the name of that person is JOE
SMITH. Next, a SourceServerIP 502 in the form of a string
is use to determine the Internet protocol (IP) address of the
server from which the content originated. In the present
example, the IP Address is 192.234.12.23. Then, a SourceS-
erverName 503 is established to provide the name of the
originating server. The present example uses the name of
DNS1.COM as the name of the source server. A variety of
column values containing boolean values are then used to set
certain rights with respect to the shredded, encrypted con-
tent. A CanEdit 504 is use to determine whether the content
can be edited. In the present example, the value is set to
“True.” A CanCopy 505 value is used to determine whether
the content can be copied. Here this value is set to “False.”
Additionally, a CanView 506, CanForward 507, CanShare
508, and CanBurn 509 columns are used to set various rights
related to the content. In this example, the values are set to
“True,” “True,” “True” and “False” respectively. Then a
BurnCount 510 is provided, which, in the present example,
is set to zero (0) signifying that no copies can be made. After
BurnCount 510, three (3) more Boolean values are provided
in the form of a column titled IsPortable 511, CheckedOut
512, and IsDemo 513. These values, in the present example,
are set to “True,” “True” and “False” respectively. In addi-

20

25

40

45

60

65

20

tion to the above disclosed embodiments, in some embodi-
ments, a column titled Expires 514 is used to set a date when
with a demonstration version, usage of the content expires.
Here the demonstration version is set to expire on Jun. 24,
2005. In some embodiments, if the expiration value is set to
zero (0), then the usage will not expire. Additionally, in
some embodiments, a boolean value is used to determine
whether a login is required to access content (i.e., a login
required field). In the present invention, a Login is required
hence the value of the field is set to “True.”

One advantage of the present system is that it does not
implement the “one-size-fits all” approach of other DRM
systems. Specifically, whereas some DRM systems, for
example, prevent one (e.g., a licensee of music) from
making any copy of a piece of digital content, or from
accessing a piece of digital content on a particular type of
device, or using a particular application to access the piece
of digital content, in some embodiments of the present
invention, one is allowed the flexibility to set or not set a
variety of different privileges, and not be wedded to any one
privilege. This flexibility, in some embodiments, allows one
using the present invention to better observe or potentially
accommodate the Fair Use rights of a licensee.

In some embodiments, the application utilizing or
requesting the shredded, encrypted digital content is charged
with the responsibility of decrypting and reassembling the
shredded, encrypted digital content. This application, in
some embodiments, is written in an object oriented pro-
gramming language including C++, C#™, Java™, Del-
phi™, or the like.

In some embodiments, the encryption and decryption
functions are performed by an Encryption Engine native to
the server or client application. In some embodiments, this
Encryption Engine typically supports an un-tethered encryp-
tion system. Specifically, in some embodiments, the inven-
tion supports symmetric encryption algorithms and tech-
niques. In some embodiments, however, an asymmetric
algorithm or tethered encryption system may be supported.
These Encryption Engines are described below.

Reassembly of Shredded, Encryption, and Stored Digital
Content from a Database

In some embodiments, Content 409 must be reassembled
in a computer system output stream or buffer from a record
set contained in Header Data and Shred Record Data tables.
In some embodiments, these data tables may be native or
remotely located. In some embodiments, the process for
reassembly is as follows. The Content 409 field of a Header
Data record 411 is copied to an output stream or buffer.
Then, based upon a correspondence between the FileID 401
value (e.g., 1) of the Header record (e.g., 411) and the
records contained in the Shred Record data table (e.g.,
records 419 and 420), an iterative or recursive process is
used to decrypt and append the Content 409 field from each
file data record (e.g., 411, 419 and 420) to the same output
stream or buffer. In some embodiments, the records will be
sorted prior to placement into the output stream or buffer,
while, in other embodiments, the records will exist as sorted
records within the tables (e.g., 305 and 306). In some
embodiments, decryption of the Content 403 will occur after
the records (e.g., 411, 419 and 420) are placed into the
output stream or buffer. This iterative or recursive process
will continue, in some embodiments, until the entire record
set corresponding to the digital content is placed into an
output stream or buffer. In some embodiments, only a
portion of the record set will be placed into an output stream
or buffer, where the portion size (i.e., a portion as denoted in
kB, MB or some other unit of measurement) of the record set

US 7,237,268 B2

21

is based upon some predetermined value. This value may be
automatically or manually determined by a user (e.g., a
server administrator) of the client or server application. The
output stream or buffer contents are next copied or sent to a
native destination application or device. In the case where
the record set is to be reassembled into a file, the output
stream or buffer is saved to a file of a user-determined name,
format (e.g., MPEG, MP3, JPEG, PDF, etc.) and location
(e.g., a file directory location). In one embodiment, once
extracted and reassembled, this digital content may be
restored to a physical media such as a CD-RW, CD-R,
DVD-R or the like. In the case of a destination stream, the
output stream data is simply copied to the destination
stream. An iterative example of the decryption and reassem-
bly process is reflected in the following pseudo code:
While (not the end of the Shred Record Data table and the
FileID data for a record in the Header Data table equals
the FileID data for a record in the Shred Record Data
table)
Read the Content field from the Shred Record Data table
into a memory location;

Run a decryption function on the Content contained in the
memory location;

Append the decrypted Content to a stream or buffer,

Get the next Content field from a record in the Shred
Record Data table

A person skilled in the art using an object orient program-
ming language would be able to implement this pseudo
code. The entire process of transmission and reassembly of
shredded, encrypted Content 409 from a remote database is
disclosed below in the section relating to the client appli-
cation.

Assembly of Multiple Shredded, Encrypted Digital Con-
tent Records into a Single File Format

In some embodiments, multiple pieces of Content 409 can
be assembled into a compilation of digital content. The
compilation, in some embodiments, can contain, among
other things, multiple files for a movie including trailer
information, comments by the participants in the movie
(e.g., actors, directors, producers, just to name a few),
outtakes, and the actual movie itself. In still other embodi-
ments, the compilation can contain multiple music tracks
for, for example, a specific artist or musical genre. In some
embodiments, an authoring tool is implemented that pro-
vides the ability to assemble a file from digital content not
stored in the application database, but from files stored
elsewhere on a user’s machine. In terms of formats, in some
embodiments, formats of varying types can be inserted into
the same compilation making it possible to combine video,
audio, graphics and text into the same compilation or
combined file. In at least one embodiment, BLOB fields are
used to store the digital content for each file. Additionally, in
some embodiments, when this compilation is saved as a
database record a new FilelD 401 is generated for it. With
regard to the actual creation of a compilation, as a threshold
matter, to generate this compilation, a list of records (e.g.,
411, 419, 420) to be placed into the compilation must be
created, using, for example, an SQL query. Once this list of
records is generated, an iterative or recursive process can be
used to first generate an output stream or buffer, assign this
new buffer content from an existing buffer or steam, assign
this buffer content from a record (e.g., 411), and get the next
record in the list or records (e.g., 419, 420). Once these
records are placed into a buffer or stream, they can be
outputted to an application or device including a client

15

20

25

40

45

50

60

65

22

application or device, and utilized as a single file. The
following pseudo code reflects this process:
While(not end of a list of records)
Generate a new stream or buffer equal in size to the record
plus an old stream or buffer;
Assign the content from the old stream or buffer to the
new stream or buffer;
Assign the content from the record to new stream or
buffer;
Get the next record

A person skilled in the art using an object orient program-
ming language would be able to implement this pseudo
code.

In one embodiment, a compilation can be created by
directly accessing the data structure containing the record set
to be compiled. In this embodiment, a data structure con-
taining the record set is read into a second data structure, be
this a list, hash table, tree, or some other data structure
known in the art. (See Algorithms in C++ Parts: 1-4, 377
Edition, by Robert Sedgewick, Addison-Wesley, 1998.)

This record set can be read in iteratively or recursively,
and will continue until the end of the record set is encoun-
tered. Each record of the set is read into an individual buffer
which is then, in some embodiments, stored in a memory
location associated with the second data structure. Each
record is associated within the data structure by virtue of a
common or shared FileID value, such that links will exist
between individual records stored in the data structure or
contiguous pieces of memory representing the data structure
will contain records with a common FileID value. The
following pseudo code reflects this process:

While(not end of the data structure containing the records)

Initialize a memory location;

Read a record containing data from a header table into the
initialized memory location;

Add the initialized memory location to a second data
structure;

If (FileID of the record stored into the second data
structure and the FileID of the next record are the same)
While(FileID of the record stored into the second data

structure and the FileID of the next record are the

same and not end-of-data-structure)

Initialize a memory location;

Read the next record into the initialized memory
location;

Add the initialized memory location to the second
data structure;

Get the next record

A person skilled in the art using an object orient program-
ming language would be able to implement this pseudo
code.

A Server Application

In some embodiments, a first and second computer system
are configured in a server-client relationship. Server and
client applications are run on the first and second computer
systems respectively (see below description). These appli-
cations, in some embodiments, are written in an object
oriented programming language such as C++, C#™, Java™,
Delphi™, or the like. Once written, a unique private key
value is embedded in the server application to uniquely
identify the server application. The application along with
the embedded key value is then compiled or interpreted as
is known in the art. In this server-client relationship, the
client requests shredded, encrypted content from the server.
This encrypted content is streamed to the client via a LAN,

US 7,237,268 B2

23

WAN or Internet. Users of the client or server application
will interact with the server or client computer systems via
various GUIs.

FIG. 6 is a schematic depicting a server-client relationship
or network 600 between computer systems. In FIG. 6 a
server 601 is connected to an Internet 602. Connected to the
Internet 602 is a wireless station 603, and work station 604,
personal computer 605, and laptop computer 606 and PDA
607 both of which are connected to the Internet 602 via the
wireless station 603. Additionally, in some embodiments, a
computer system 100 can reside in an automobile 608 or an
airplane 609, and hence either one or both of these computer
systems 100 can be connected in a server-client configura-
tion to other computer systems 100, including those listed
above, via a wireless station 603. In some embodiments, the
laptop computer 606 is connected directly to the Internet
602. In some embodiments, the server 601 is a server in the
traditional sense in that it carries out tasks for another
computer (e.g., a client). This client can be any of the above
mentioned computer systems (e.g., laptop computer 606,
PDA 607, personal computer 605).

FIG. 7 depicts a peer-to-peer network 700 between com-
puter systems whereby each computer system functions
simultaneously as both a client and a server. In FIG. 7, a
personal computer 701 is connected to an Internet 702, a
work station 704, and a second personal computer 705.
Connected to the Internet 702 are a wireless station 703, and
personal computer 705. Furthermore, connected to the wire-
less station 703 are a laptop computer 706 and PDA 707 both
of which are connected to the Internet 702 via the wireless
station 703. Additionally, in some embodiments, a computer
system 100 can reside in an automobile 708 or an airplane
709, and hence either one or both of these computer systems
100 can be connected in a peer-to-peer configuration to other
computer systems 100, including those listed above, via a
wireless station 703. In some embodiments, the laptop
computer 706 is connected directly to the Internet 702. In
this peer-to-peer configuration, any of the above disclosed
computer systems (e.g., laptop computer 706, PDA 707) can
perform the server tasks normally associated with a server
computer system (e.g., server 601).

In some embodiments, the server application has a num-
ber of basic functionalities associated with it. These func-
tionalities can be configured individually or as a group to
meet certain needs of a user of the server application.

In some embodiments, a general configuration is
employed that allows the server to be assigned a name by
which clients will address it through the Transport Layers.
Maximum-memory-usage and temporary-storage-size val-
ues are also maintained in this area. Server priority levels
may also be selected with a value set of: Highest, Above
Normal, Normal, Below Normal, and Lowest. Various other
settings govern general security, startup, garbage collection
(memory management), and client retry settings. All of these
items are presented in an independent dialog window with
options to commit or cancel changes.

In some embodiments, a network configuration is
employed which allows the user to configure each installed
transport layer. Each layer contains settings for one or more
ports on which to communicate, and a physical adapter
selection on which to connect to the network (e.g., LAN,
WAN, or Internet). Each transport layer may also be enabled
or disabled. Support is also provided for automatic avail-
ability broadcasting, or private operation mode. The maxi-
mum number of supported transport layers is dependent
upon the bounds of each compiled instance of the server.

10

15

20

25

30

35

45

50

55

60

65

24

In some embodiments, in addition to the above described
general and network configurations, various additional func-
tionalities are available for the server application. Various
user administration functions are available that allow the
addition, modification and deletion of user profiles used
when the server is operated in a secured mode. Each profile
specifies a username, last name, first name and an optional
administrator designation. The profile also contains multiple
permissions flags including read, insert, update and delete.
Additional profile settings may exist to fulfill other func-
tionality within specific compiled versions of the server.
Users with administrative designation can log into the server
and change any of the configuration settings. For example,
read access allows users to open database tables in read-only
mode, while insert rights allow users to create new tables
and add new records. Update rights allow users to rename,
restructure, pack, and re-index tables and modity records in
tables, whereas delete rights allow users to delete tables and
delete records from tables.

In addition to the various functionalities associated with
the user administration designation, in some embodiments,
a user can engage in alias configuration wherein the user can
add, edit or delete aliases known to the server. An alias is a
named reference to a storage location containing database
tables. In some embodiments, the path references a fully
qualified path to a folder under the host operating system. In
some embodiments, an unlimited number of aliases are
supported. In some embodiments, clients utilize aliases to
reference specific databases without having to know the
physical path on the server. This also provides operating
system independent access to the database. In some embodi-
ments, the clients may implicitly contain or know alias
names, or they may be queried from the server at runtime
after passing security requirements.

In some embodiments, a scripting functionality is imple-
mented that allows the server to process specific commands
individually, or in batch mode. Commands may be submit-
ted to the server from clients via the Transport Layers. Batch
commands may be processed at startup through specific
files, or received as streams from the transport layer. In some
embodiments, these batch commands are written in some
type of scripting language such as Perl, or some other
language known in the art.

In addition to the above described functionality, in some
embodiments, basic server functionality is included. Start
Server initiates communication with client via the Transport
Layers, using the user-specified configuration settings. Any
errors preventing startup are displayed for user intervention
and optionally written to a log table or file. Successful
startup is indicated by one or more images or words on the
main display. Additional server modules may also be initi-
ated at startup and may contain additional settings and
indicators. These modules are specific to each compiled
instance of the server. Stop Server halts all communication
over the Transport Layers leaving clients disconnected from
the server. The application window remains active and the
server may be re-started. Exit Server halts all communica-
tion over the Transport Layers leaving clients disconnected
from the server and closes the application window.

A Server Application Interface

In some embodiments, the server application interface
provides end-user access to system settings, user accounts,
and database references (i.c., the aforementioned aliases). A
main application window is displayed, in some embodi-
ments, containing menus and buttons to access various
functions, relating to the definition and operation of the
network. The main window inherits all standard functions as

US 7,237,268 B2

25

defined by the host operating system. The form contains
various visual components to facilitate user interaction.

In some embodiments, the form also contains various
display components used to convey some or all of the
following informational items: database statistics for all
client activity such as: state (i.e., active/inactive), connected
client count, active session count, open database count, open
table count, number of database cursors, and memory usage.
In some embodiments, client connections statistics for all
activated Transport Layers such as: addresses, state, con-
nected client count, message count, and performance calcu-
lations. In some embodiments, uptime is expressed in days,
hours, minutes and seconds. In some embodiments, a hier-
archical menu structure provides access to various settings
and options, which are presented inside one or more modal
dialog boxes. In some embodiments, button bars containing
access to additional, or commonly used functions are imple-
mented. In some embodiments, various images, bitmaps and
glyphs are used to indicate on/off status of configuration
settings and operational modes are implemented. This form
runs on the console of the host computing device and
provides real-time information and interaction. The host
network connection is used to facilitate client communica-
tion via one or more Transport Layers.

GUIs developed using one of the above disclosed object-
oriented programming language is a practice well known in
the art. (See C++ GUI Programming with Q¢ 3, by Jasmin
Blanchette & Mark Summerfield, Prentice Hall PTR, 2004.)
FIG. 8 is a schematic of a startup options GUI 800. In some
embodiments, a server name can be inserted into a text box
801. This server name can be changed from a general
configuration window or frame, but only when the server
application is not running. In at least one embodiment, the
server name is combined with the IP address of the local
machine to determine how a client computer system can
connect to the server when multiple servers are running on
the same local machine. In some embodiments, a text box
with an incrementing button 802 is implemented to allow a
user such as, for example, a server administrator, to set the
refresh rate or the interval for the rate at which statistics for
a particular server application is displayed. A check box 803
that, when checked, creates a new session between a server
and client computer systems is also implemented in some
embodiments. The session is used as a log to help differen-
tiate between one span of time to another. Every time a new
session is chosen from the startup options, the session
number is increased by one. In some embodiments, a button
804 is implemented to stop the application server from
running. When stopped, multiple configurations can be
edited that are not enabled to be edited when the server is
running. If a server is already in a stop mode, then this button
is disabled. In at least one embodiment, a button 805 denoted
by a padlock icon is implemented whereby, if the server
security is enabled, this icon will show as a closed padlock.
In the alternative, if the server security is disabled, this icon
will show as an open padlock icon. A start button 806 is
implemented, in some embodiments, that initiates a server
application that runs the server. Once the server has been
started it will be able to process requests from the client
applications. If the server is already running, this button is
disabled. In some embodiments, a general settings button
807 is implemented, which when executed, opens a second
window or frame that allows one to perform such tasks as
setting a server name, specifying resource and memory
management and retry options among other things. In some
embodiments, a protocols and network settings button 808 is
implemented, that, when executed, opens an additional

10

15

20

25

30

40

45

50

55

60

65

26

window or frame for performing such tasks as adjusting the
TCP/IP Transport Layer and network settings. Next, In some
embodiments, an alias management 809 button is imple-
mented that, when executed, opens an additional window or
frame that allows additional functionality to manage an alias
associated with a server application. In some embodiments,
a user management button 810 is implemented that allows
management of users and the various privileges associated
with these users and stores this information into a server
application database. In at least one embodiment, a running
icon 811 is implemented whereby if the server application is
running, this icon will display a green circle with a white
arrow in it. If, however, the server is stopped, this icon will
display a red circle with a white dot in it. Moreover, in at
least one embodiment, a help button 812 is implemented that
allows a user to open a help window, whereby the user can
perform a text search using a text box to input data, or index
search of the various functionalities associated with the
server application.

FIG. 9 is a schema of a general configuration GUI 900. In
some embodiments, a general settings button 807 is
executed. Once executed, a window or frame opens and
additional functionality relating to configuring a server
application is displayed. In some embodiments, a text box
901 is implemented allowing for a user to input a server
name. The server name can only be modified while the
server application is not running. This server name deter-
mines what server names may be selected. In terms of what
names can be inputted into the text box 901, any name
comprised of ASCII or Uni-Code characters of a predeter-
mined length may be used. In some embodiments, a text box
902 is implemented that allows a user, such as a server
administrator, to input the maximum amount of random
access memory (RAM) that may be used for a server’s
internal RAM cache. In at least one embodiment, a text box
903 may be implemented to record the maximum memory a
server will use for virtual memory in, for example, the hard
drive (i.e., magnetic storage device) implemented by the
server. In some embodiments, a drop down menu 904, with
setting of highest, medium and lowest, is implemented to
enable an individual to set the thread priority that specifies
the priority given to the application server from the operat-
ing system (e.g., a Windows 32-bit operating system) for
processing priority. In some embodiments, a check box 905
is implemented to denote whether or not encryption is used.
If it is unchecked, the database does not apply encryption,
while if it is checked qualified clients are given the means to
decrypt data when needed. In at least one embodiment, a
check box 906 is implemented that, when checked, requires
that logins, including user name and password, be used. If
this is not checked, then no login will be necessary. A check
box 907 is implemented in at least one embodiment,
wherein, if checked, any configuration changes will not be
saved during the current session. Specifically, the next time
the server application is executed it will revert back to the
prior server application configuration settings. In some
embodiments, a check box 908 is implemented that allows
one to disable server output wherein, if checked, the server
application will not be able to output any data from the
database tables. In at least one other embodiment, a check
box 909 is implemented that allows for various startup
options to be executed that automatically bring up the server
application whenever the machine upon which the server
application is sitting is executed. In some embodiments, a
check box 910 is implemented to set certain startup options,
wherein, if checked, the server will automatically be mini-
mized when it is brought up (i.e., the server application

US 7,237,268 B2

27

window or start up frame). In some embodiments, a check
box 911 is implemented which, when checked, allows for a
memory management function to be enabled such that a
predetermined amount of memory may be freed up by the
operating system for use by the server application. In still at
least one additional embodiment, a text box 912 is imple-
mented that allows a user to set the frequency at which the
server application checks with the operating system to
reclaim memory previously allocated and used by the server
application, memory which can now be freed up for use (i.e.,
re-use) by the server application. In some embodiments, a
text box 913 is implemented that allows for various retry
options to be implemented, including setting the retry option
based upon the interval from last message received by the
server application from a client application. Specifically, this
text box 913 sets the interval for how long the server
application will wait to keep alive a message from a client
since the last time the client sent a keep a live message. In
still one other embodiment, a text box 914 is implemented
relating to keep alive information, where a server application
waits before disconnecting the client application from a
network based upon the time between messages. In some
embodiments, a further text box 915 is implemented
whereby retry options are set that determine the number of
tries that will be made to keep a line of communication open
between a server and client application. Once any of these
predetermined thresholds as entered into the text boxes of
913, 914, or 915 have been met, the server closes the
connection with that client. In some embodiments, a series
of Save, Cancel, and Help buttons 916 are implemented.
These buttons provide the option to save, cancel or access
the help option for the general configuration GUI 900.
FIG. 10 is a schema depicting a protocol and settings GUI
1000 as implemented. That is, in some embodiments, a
protocols and network settings button 808 is implemented,
that, when executed, opens an additional window or frame
for adjusting the functionality relating to the configuration of
various TCP/IP Transport Protocols. In some embodiments,
various TCP/IP Transport Layers are used to transmit digital
content as denoted by the TCP/IP icon 1001. In at least one
embodiment, a check box 1002 is implemented to allow for
various TCP/IP Transport Layers to be used to enable
communication between server and client applications.
Where this box is not checked, the TCP/IP Transport Layers
will not be used. In still other embodiments, a check box
1003 is implemented where, when enabled, the server appli-
cation will detect any client applications that ask for a list of
available servers and respond to that client request with its
server name and net name (i.e., IP address). In some
embodiments, a text box 1004 is implemented that allows
for a TCP port to be denoted for communication between the
server and client application. In some embodiments, a user
datagram protocol (UDP) server port is used to facilitate
communication between a server and client application. A
text box 1005 is used to input the name of the server-side
UDP port. In still other embodiments, another UDP port is
used to facilitate communication between a server and client
application, by denoting the client-side port. The name of
this port is entered into a text box 1006 and recorded by the
server application via this text box. In some embodiments,
a network adaptor is implemented using a drop down menu
1007. This drop down menu 1007 allows one, such as a
server administrator, to specify the network adapter the
server will use for network traffic. This is useful if the local
computer system upon which the server application is run-
ning has multiple network adapters. In some embodiments,
anicon 1008 is used to denote that a single local user is using

20

25

40

45

60

65

28

the server application. In some embodiments, a check box
1009 is implemented such that when activated, the server
application is locally used for single user transport. In some
embodiments, buttons 1010 are provided to enable a user
(e.g., a server administrator) the option to save, cancel or
access the help option for the protocols and network settings
window.

FIG. 11 is a schema depicting a server statistics GUI 1100.
In some embodiments, various statistics relating to various
functions carried out by the server application are displayed.
Specifically, this GUI is used to view the current state of the
server for resources used and types of connections to the
server. It also shows the time the server application was
started as well as the current up time for the server appli-
cation. In some embodiments, various display boxes 1101,
1102, 1103 are implemented to show the current server state
for RAM (i.e., display box 1101) used as well as the number
of clients (i.e., display box 1102) connected and the current
session (i.e., display box 1103). In particular, display box
1101 shows the amount of RAM that is currently being used
by the server’s internal cache. Next, display box 1102 shows
the number of clients currently connected to the server. As
clients connect to the server this number increases. As
clients log out this number decreases. Then, a display box
1103 is implemented to allow for the current session number
to be displayed. Every time a new session is chosen from the
startup options, the session number is increased by one. In
at least one embodiment, a display box 1104 disclosing
database information is used. This display box 1104 shows
the number of databases currently open or being accessed.
Then, a display box 1105 is used to show the number of
database tables currently open or being accessed. Addition-
ally, in some embodiments, a cursor 1106 shows how many
cursors are active. In still other embodiments, various trans-
port layer information 1114 is disclosed that shows the
default configured transports for the current server applica-
tion. In some embodiments, the names of the transports
configured for the server application are displayed in a
display box 1108. In at least one embodiment, the IP address
for the transport configured for the server is defined, and
displayed via a display box 1109. Then, in some embodi-
ments, a display box 1110 is used to display the current state
of'the transport (i.e., started, stopped, or failed). In still other
embodiments, a display box 1111 is used to display the
number of clients connected to the server application
through specified transports. Furthermore, in some embodi-
ments, the number of messages sent is specified in a display
box 1112. Moreover, in some embodiments, a display box
1113 is used to display the rate at which messages are sent
through the transport connection. In some embodiments, a
display box 1115 is used to denote the start time, and a
second display box 1116 is used to show the time and date
at which the server application was started. Additionally, an
uptime display box 1107 is implemented to denote the time,
in hours and days, the server application has been operating.

FIG. 12 is a schema of an alias management GUI 1200.
In some embodiments, an alias management 809 button is
implemented where, once executed, a server alias can be
generated or managed. In some embodiments, a button 1201
is implemented to allow for a new window or frame to be
created wherein information relating to a new alias can be
entered. In some embodiments, a button 1202 is imple-
mented that allows for alias information to be edited such
that, once executed, a new frame or window is opened
wherein alias information may be edited. In some embodi-
ments, a delete alias button 1203 is implemented which,
when executed, opens a window or frame for removing an

US 7,237,268 B2

29

alias from a list of server aliases. In at least one additional
embodiment, a display box 1204 is implemented that defines
a path from the alias directory to where the files are actually
stored on the server. In some embodiments, various save,
cancel, and help buttons (collectively referred to herein as
buttons 1205) are implemented. These buttons provide a
user the option of saving, canceling or accessing the help
option for the alias management window or frame.

FIG. 13 is a schema of an alias management GUI 1300,
and, in particular, where a button 1201 is executed and a new
window or frame is opened for the purpose of creating a new
alias. In this window, a text box 1301 is implemented to
enter in the new name of a server alias. Next, a text box 1302
is implemented such that a new path for the alias to the
physical storage location in memory is designated. In some
embodiments, various save, cancel, and help buttons (col-
lectively referred to herein as buttons 1303) are imple-
mented. These buttons provide a user the option of saving,
canceling or accessing the help option for the alias manage-
ment window or frame.

FIG. 14 is a schema of an alias management GUI 1400,
and, in particular, where a button 1203 is executed and a new
window or frame is opened for the purpose of deleting an
alias. In some embodiments, various save, cancel, and help
buttons (collectively referred to herein as buttons 1401) are
implemented. In some embodiments, the name of the alias to
be deleted is entered into a text box 1402. In at least one
embodiment, the path for a particular alias is entered into a
text box 1403. In still other embodiments, a particular alias
name and path can be highlighted in a list, and the name and
path information automatically entered into the above dis-
closed text boxes 1402 and 1403.

FIG. 15 is a schema of a user management GUI 1500, and,
in particular, where a button 810 is executed and a new
window or frame is opened for the purpose of setting user
privileges (e.g., admin, read, insert, update, or delete) via
various check boxes 1501. Additionally displayed in this
GUI 1500 is information relating to UserID, LastName, and
FirstName. A button 1502 is displayed that, when executed,
opens a new window or frame for the purpose of adding a
new user. Furthermore, in some embodiments, a button 1504
is implemented for editing the user information for an
existing user. In at least one embodiment, a button 1503 is
implemented for deleting user information. In some embodi-
ments, various save, cancel, and help buttons (collectively
referred to herein as buttons 1505) are implemented.

FIG. 16 is a schema of a user management GUI 1600,
wherein new user information can be inputted. In some
embodiments, a button 1502 is executed wherein a window
or frame is opened to allow for new user information to be
entered into the server application. In this new window a text
box 1601 is used to enter the new UserID. In some embodi-
ments, a text box 1602 is implemented to allow a user to
enter a Last user name. In at least one embodiment, a text
box 1603 is implemented to allow a user to enter a First user
name. In some embodiments, a Password 1604 may be set
via a text box for a new user. Furthermore, in some embodi-
ments, a text box 1605 is implemented to allow for the
verification of the previously entered Password. In some
embodiments, various check boxes are used to set a user’s
permissions (i.e., denoted by a permissions 1612 icon) in the
system (e.g., administrator 1606, read 1607, update 1608,
insert 1609). In some embodiments, various save, cancel,
and help buttons (collectively referred to herein as buttons
1505) are implemented.

FIG. 17 is a schema of a user management GUI 1700,
wherein user information to be deleted can be inputted. In

10

15

20

25

30

35

40

45

50

55

60

65

30

some embodiments, a button 1503 is executed wherein a
window or frame is opened to allow for user information to
be deleted from the server application. In some embodi-
ments, a text box 1701 is implemented to allow for a UserID
to be deleted. Then, in some embodiments, a text box 1702
is implemented to allow for the last name of a user to be
deleted. Additionally, in some embodiments, a first name is
entered into a text box 1703 to provide information to be
deleted. Yes and no buttons (collectively referenced as
buttons 1704) are used to execute the deletion of the entered
UserID, Last and First names. Additionally, a help button
1705 is also implemented.

A Logic Level for the Server Application

In some embodiments, various modules of compiled or
interpreted computer code are implemented in one of the
above mentioned languages (collectively known as “Core
Modules™). These Core Modules perform a variety of dif-
ferent functions.

FIG. 18 is an application-level schematic of the shred-
ding, encryption and storage process 1800 utilizing the
Content Management Module, and the encryption module or
engine. In this schematic, a piece of digital content in the
form of a file titled EXAMPLE.PDF 413 is processed by a
Content Management Module 1801, and shredded into three
pieces of content 1802. This Content Management Module
1801 implements one of the above described shredding
algorithms.

These three pieces are then processed by an Encryption
Engine 903, and encrypted into three shredded, encrypted
pieces of content 904. This Encryption Engine 903 imple-
ments one the below described encryption algorithms. These
three pieces of shredded, encrypted content are then stored
into the Header Data Table 305 and the Shred Record Data
Table 306.

In some embodiments, the Content Management Module
takes a piece of digital content in the form of a GIF, TXT,
PDF, DOC, MPEG, JPEG, MP3, WAV, AAC or other file
and associated format known in the art, and shreds or breaks
apart this file into smaller pieces. In some embodiments, the
size into which the file is broken (i.e., the shred size) is
predetermined, whereas in other embodiments this shred
size can be set manually at the server application level. In
some embodiments, the shred size will be based upon the
requirements of the client application. Once the shred size is
determined, the digital content is shredded as is described
above. This module, in some embodiments, also allows for
the management of the digital rights associated with a piece
of content as is described above. In some embodiments, the
server application takes digital content and shreds, and
stores this digital content, while in other embodiments it is
the client application that performs these tasks. One advan-
tage of shredding this digital content is to make it less
susceptible to individuals trying to gain unauthorized access,
for rather than being able to access all of the content at once
as a file, a person seeking unauthorized access can only gain
access to a portion or part of the file. Once shredded, this
digital content is then encrypted using an Encryption Engine
903 implementing one of the encryption algorithms
described below.

In some embodiments, an Encryption Engine 903 is
implemented. This engine is responsible for encrypting and
decrypting messages and data sent between the client and
the server. In some embodiments, the engine implements a
symmetric key algorithm, whereas in other embodiments it
implements an asymmetric key algorithm. These are also
known in the art respectively as un-tethered and tethered
systems of encryption. In some embodiments, the symmetric

US 7,237,268 B2

31

algorithm implements the Advanced Encryption Standard
(AES). (See The Design of Rijndael: AES—The Advanced
Encryption Standard, by Joan Daemen & Vincent Rijmen,
Springer-Verlag, 2002.) AES can use key sizes of 128, 192,
or 256 bits. The usefulness of a particular key size can be
determined through empirical testing and/or modeling. In
some embodiments, the key size is automatically determined
by the Encryption Engine 903 based upon some type of
preset size. In still other embodiments, the key size is
selected by the user to meet their particular needs. In some
embodiments, an interface exists between the Encryption
Engine 903 and a database application (see below) such that
different Encryption Engines and accompanying algorithms
(e.g., AES, Triple-DES, IDEA, or Blowfish just to name a
few) can be swapped out or used so as to provide a variety
of options for the type of encryption protections that may be
offered.

In some embodiments, each compiled instance of the
server can have an embedded key (i.e., unique, multi-bit
code and key combination). Once the key value is generated,
it is a private key only known and shared between a
particular server and client application. In some embodi-
ments, this private key is itself encrypted, while in other
embodiments it is not. In some embodiments, a hash func-
tion is used to protect the private key value, in still other
embodiments various programming techniques, known in
the art, are used to protect the private key value. (See
Cryptography: Theory and Practice, 2nd Edition, by Dou-
glas Stinson, Chapman & Hall/CRC, 2002.) In some
embodiments, the embedded key has a key size of 128 bits.
The actual key size used can be determined, in some
embodiments, through empirical testing and/or modeling.

In some embodiments, the embedded key used at both the
client and the server side must be the same so as to verify the
identity of the client and/or server. In some embodiments,
once the identity of the client and/or server is verified, the
proper Encryption Engine 903 can be determined for the
purpose of encryption or decryption of digital content. This
Encryption Engine 903, in some embodiments, contains a
table of private key values to be used to decrypt or encrypt
the content.

In some embodiments, each individual piece of shredded,
encrypted content (Content) is encrypted with a separate
private key, and tracked by an Encryption Engine 903
possessing a table of key values. In some embodiments, a
hash function is used to protect or obscure a private key
value. In still other embodiments, various programming
techniques are used to protect or obscure the private key
value, in some embodiments, a separate protected key is
transported with each piece of Content. In some embodi-
ments, the database table into which the Content is stored is
itself encrypted with another private key. In some embodi-
ments, 128-bit encryption is used to protect the Content and
the database tables. The actual key size used can be deter-
mined, in some embodiments, through empirical testing
and/or modeling.

FIG. 19 is a schematic of an un-tethered system 1900 of
encryption. First, a Step #1 is implemented whereby a client
1905 log onto an internet 1903 and connects to a server
1901. The server 1901 requests that the client 1905 provide
a copy of its embedded private key 1902 to verity its
identity. This embedded private key 1902 is transmitted to
the server 1901 via an internet 1903, and compared against
the embedded private key 1906 of the server 1901. Once a
correspondence of values between the client 1905 private
key 1902 and the private key 1906 of the server is verified,
a Step #2 is executed. In Step #2, a client 1905 makes a

20

25

40

45

60

65

32

request for Content 1907. In the present example, the client
1905 makes a request for a file titled EXAMPLE.PDF. This
request is transmitted via an internet 1903. Once received by
the server 1901, the Content corresponding to the request is
transmitted to the client 1905 via the same internet 1903. In
the present example, two pieces of Content 1908 and 1909
are transmitted.

FIG. 20 is a schematic providing an application-level
view of the un-tethered system 2000 and in particular the
sending portion of the system (i.e., the above disclosed Step
#2). In FIG. 20, various applications and code modules are
disclosed that are utilized in the sending of Content to a
client 2005 from a server 2001. In this system, portions of
the requested Content are retrieved in a random order using
a Randomizer Module 2012. Randomizer modules (i.e.,
modules of computer code that randomly generate numeric
values to be used in performing specific tasks) are well
known in the art. (See Java: How to Program 3" Edition, by
H. M. Deitel & P. J. Deitel, Prentice Hall, 1999.) The
Randomizer Module 2012 makes calls to the database tables
(i.e., 2020, 2011) using a specific FileID 401 (e.g., 1) value
and a randomly generated numeric value (e.g., 1 or 0)
corresponding to a ChunkID 414 value, and retrieves an
individual record corresponding to this FileID 401 and the
ChunkID 414 value. In some embodiments, an entire set of
records is retrieved by the randomizer, stored to a server-side
buffer, and individual records are randomly extracted from
this set and transmitted to a client computer system. This
individual record is then sent a server-side Encryption
Engine 2014 where its corresponding private key value is
hashed, encrypted with a further private key, or obscured in
some manner known in the art. In the present example, the
private value is hashed. In some embodiments, the private
key is passed through a series of functions that hide its value.
This process continues until all the records containing a
FileID 401 are processed by the Randomizer Module 2012.
Once hashed, the records 2008 and 2008 are sent via an
internet 2003 to a client buffer 2013. Once in the client
buffer 2013, the records are sorted by the ChunkID 414
values in a descending or ascending order by a Sort Module
2015. In some embodiments, the records are sent in a
sequential order such that no sorting is required. Once
sorted, in some embodiments, the Content 409 is sent to a
client-side Encryption Engine 2016 that decrypts the Con-
tent 409 and sends it as reassembled, decrypted digital
content to a player application 2017, or to either a Header
Data table 2018, or Shred Record Data table 2019. In some
embodiments, decryption occurs prior to reassembly in a
client buffer 2013. In some embodiments, the decryption and
reassembly process in a client buffer 2013 is as described
above in the section titled: Reassembly of Shredded,
Encrypted and Stored Digital Content from a Database. In
those instances where the digital content is sent to either of
the two data tables 2018 or 2019, the digital content is
re-encrypted, assigned new FileID 401 and ChunkID 414
values based upon a setting specific to the client 2005. In
some embodiments, this digital content may be re-shredded
prior to re-encryption to meet the needs of the client 2005,
or a specific application or device.

While, in some embodiments, an un-tethered system of
encryption is implemented, it is possible that a tethered
system or asymmetric encryption algorithm and supporting
system could be implemented. Asymmetric encryption algo-
rithms and techniques are well known in the art. (See RS4
& Public Key Cryptography, by Richard A. Mollin, CRC
Press, 2002.) These types of encryption algorithms and
techniques differ from un-tethered or symmetric encryption

US 7,237,268 B2

33

algorithms and techniques in that the tethered or asymmetric
system utilizes a public and private key (i.e., a key pair) to
encrypt and decrypt digital content. By contrast, the un-
tethered system only uses a single private key. A further
difference is that in many cases, a third party is used to verity
the validity of the public key and private key pairs during the
course of encryption. This reliance on a third party gives rise
to the description of the asymmetric system as a tethered
system. Some well known asymmetric encryption algo-
rithms include RSA, and Diffie-Hellman, just to name a few.

In some embodiments, a tethered, asymmetric system of
encryption is implemented. In such a system, the identity of
a client application or device is verified by exchanging the
embedded private keys between the server and client appli-
cations. Once the identity of the client is verified, the client
device generates a public key/private key pair, and sends the
public key to the server application to be used to encrypt the
digital content that has been requested. In some embodi-
ments, multiple public key/private key pairs are generated,
one for each piece of shredded digital content or record (e.g.,
records 411, 419, and 420). In some embodiments, the
embedded key of the client application or device is used to
re-encrypt each piece of digital content, and a second layer
of encryption protection is added in the form of one or more
public keys provided by the client application or device.
After the digital content is encrypted with the public key, it
is sent to the client application, where it is received,
decrypted with the private key and played, viewed or
otherwise utilized.

FIG. 21 is a schematic of a tethered system 2100 of
encryption. In some embodiments, a first step (i.e., Step #1)
is executed whereby the identity of a client 2105 is validated
through the client 2105 sending a copy of its embedded
private key 2102 to a server 2101 via an internet 2103. This
private key 2102 is compared against the private key 2106
of'the server 2101. The identity of the client 2105 is verified
where the two private key values (i.e., 2102 & 2106) match.
Next, a second step (i.e., Step #2) is executed whereby the
client 2105 generates a public key 2110/private key 2121
pair. The public key 2110 is sent to the server 2101 along
with a Content request 2112 via an internet 2103, while the
private key is maintained by the client application 2105.
Once the server 2101 receives this public key 2110 it is free
to encrypt portions (e.g., 2108, 2109) of the requested
Content with this public key 2110 and send it via an internet
2103 to the client 2105. Once received by the client 2105,
the Content 2108, 2109 will be decrypted using the private
key 2121. In some embodiments, multiple private key 2110
and public key 2121 pairs are generated, one for each piece
of Content into which the requested file has been divided.

FIG. 22 is a schematic providing an application-level
view of the tethered system 2200 and in particular the
sending portion of the system (i.e., the above disclosed Step
#2). In FIG. 22, various applications and code modules are
disclosed that are utilized in the sending of Content to a
client 2105 from a server 2101. In this system, portions of
the requested Content are retrieved in a random order using
a Randomizer Module 2212. The Randomizer Module 2212
makes calls to the database tables (i.e., 2210, 2222) using the
FileID 401 and retrieves the set of records that possess the
FileID 401. In some embodiments, the records are individu-
ally retrieved by the Randomizer Module 2212 as opposed
to being retrieved as a set of records. In some embodiments,
the individual records or set of records is stored into a
server-side buffer prior to transmission. The Randomizer
Module 2212 then generates random numeric values and
sends individual records from this set based upon a corre-

20

25

40

45

60

65

34

spondence between the randomly generated value and
ChunkID 414 value. These randomized records are then sent
to a server side Encryption Engine 2214 where their corre-
sponding public key values are hashed, encrypted with a
further public key, or obscured as is known in the art. In the
present example the public key value is hashed. Once
hashed, the records 2208 and 2209 are sent via an internet
2203 to a client buffer 2213. Once in the client buffer 2213,
the records are sorted by the ChunkID 414 values in a
descending or ascending order by a Sort Module 2215. Once
sorted, the Content portion of the record is sent to a
client-side Encryption Engine 2216 that decrypts the Con-
tent and sends it to a player application 2217, or to either a
Header Data table 2218, or Shred Record Data table 2219.
In some embodiments, the records contained in the client
buffer 2213 are decrypted prior to being placed into the
buffer. In some embodiments, the decryption and reassembly
process in a client buffer 2213 is as described above in the
section titled: Reassembly of Shredded, Encrypted and
Stored Digital Content from a Database. In those instances
where the digital content is sent to either of the two data
tables, the shredded, unencrypted content is re-encrypted,
assigned new FileID 401 and ChunkID 414 values specific
to the client 2105. In some embodiments, this digital content
may be re-shredded prior to re-encryption to meet the needs
of a specific application or device.

In some embodiments, a Hybrid-Crypto system, as shown
in FIG. 23, could be implemented using the above described
asymmetric and symmetric encryption techniques. In some
embodiments, a tethered system could be implemented
whereby a separate public key/private key server could be
implemented to verify the identity of a client application or
device. In such a tethered system, the Content generated
using the above described shredding and encryption tech-
niques would be signed with a public key used by a client,
but provided to the client by a server application or device.
This public key or signature would be verified by a third-
party server by comparing it to a private key value. Once the
identity of the client application or device was verified, the
encrypted Content would be sent to this client application or
device as determined by a URL or other means of identify-
ing the client application or device. The advantage of such
a tethered system is that it provides for client verification
that is not based upon an embedded key specific to a client
and/or server application or device, whose value, once
discovered, negates the usefulness of the client and/or server
application.

FIG. 23 depicts a Hybrid-Crypto system 2300 that
employs both asymmetric and symmetric encryption tech-
niques. In this system, a client 2305 is supplied a public key
of a public key 2311/private key 2310 pair generated by a
server 2301 (i.e., Step #1). The public key 2311 is supplied
via an internet 2303 to a client 2305. At the same time, the
private key is sent to a public key/private key server 2313.
At some later point in time, a client 2305 requests Content
from the server 2301 by first verifying its identity to the
public key/private key server 2313 by providing the public
key 2311 to this server 2313. Once the identity of the client
2305 is verified, a message 2323 is sent to the server 2301
that the identity of the client 2305 has been verified. The
client 2305 then makes a Content request 2307 via an
internet 2303, and pieces of Content 2308 and 2309 are
supplied to the client 2305 by the server 2301 via the same
internet 2303 (i.e., Step #2). The actual decryption of the
private symmetric keys associated with each piece of Con-
tent 2308 and 2309 is as described above.

US 7,237,268 B2

35

In some embodiments, the aforementioned RSA asym-
metric encryption algorithm can use key sizes of 128, 192,
or 256 bits. The usefulness of a particular key size can be
determined through empirical testing and/or modeling. In
some embodiments, the key size is automatically determined
by the Encryption Engine (e.g., 903, 2214, 2216) based upon
some type of preset size. In still other embodiments, the key
size is selected by the user to meet their particular needs. In
some embodiments, an interface exists between the Encryp-
tion Engine and a database application such that different
Encryption Engines and accompanying algorithms can be
swapped out or used so as to provide a variety of options for
the type of encryption protections that may be offered.

In some embodiments, a session management module is
implemented. In some embodiments, this module records
server uptime and statistics for specific data items and
service usage metrics. In some embodiments, this informa-
tion is saved in a specific table and available for reporting to
client applications and services. In some embodiments,
various types of search and batch report functions are
available to retrieve information relating to service usage
metrics such as memory, processor, or bandwidth use just to
name a few. Similarly, in some embodiments, a batch report
relating to individual customer usage of bandwidth and
digital content, including the number of files that have been
shredded and encrypted, can be generated. In some embodi-
ments, these reports and the data reported therein will be
date and time stamped. In some embodiments, these reports
can be displayed using a text editor such as Microsoft
Notepad™, or Unix Vi, Emacs, or the like. In some embodi-
ments, these reports can then be printed out, emailed or
stored onto some type of physical storage media for future
reference.

In some embodiments, a payment-processing module is
implemented. In some embodiments, the module submits
financial transactions posted to specific tables through third-
party clearing houses for approval. Results are posted back
to the same tables and reported back to client applications.
In some embodiments, a client may request a piece of
Content from the server application. In response the client is
asked to provide method of payment information (e.g.,
credit card account information). This payment information
is then routed to a third-party server for verification of the
validity of the payment information, and to determine if the
requisite funds are available. In some embodiments, the
client must manually enter the payment information,
whereas, in other embodiments, the process is automated
such that a client account is maintained on the server
application and a payment method pre-provided by the client
is used as payment. Put another way, in some embodiments,
credit card information is associated with a particular user
and/or client such that this account may be automatically
charged where Content is requested from the server appli-
cation. Once this information is successfully provided the
server application delivers the requested Content to the
client.

In some embodiments, a task-scheduler module is imple-
mented. In some embodiments, this module monitors the
system clock and initiates events and services at times
established by a user configuration and stored within specific
tables. In some embodiments, these events and services
include checking for software module updates, deploying
software patches, executing and scheduling the execution of
batch files, and checking memory usage and scheduling disk
de-fragmentation where necessary, just to name a few.

In some embodiments, a maintenance manager is imple-
mented. In some embodiments, this module initiates data-

20

25

40

45

60

65

36

base maintenance routines based upon scheduled events
stored within specific tables. For example, in some embodi-
ments, various database-optimization algorithms are imple-
mented to ensure the efficient implementation of the data-
base and to limit the likelihood of such things as non-
additive joins. In some embodiments, these algorithms can
be automatically implemented as a scheduled task, while in
other embodiments they can be manually implemented. The
actual algorithms implemented may be Boyce-Codd Normal
Form or some other normalization, optimization algorithm
known in the art. (See The Fundamentals of Database
Systems 3% Edition, by Remez Flmasri & Shamkant B.
Navathe, Addison-Wesley, 2000.) In some embodiments, the
user of the server application is prompted regarding data that
have not been accessed or used so as to allow the user to
make a decision regarding whether data should be discarded.

In some embodiments, a policy-enforcement module is
implemented. In some embodiments, this module monitors
traffic and data conditions to ensure proper execution of
services and features. Specifically, in some embodiments, a
server may, for example, have certain bandwidth limitations
for all clients or particular clients relating to how much
bandwidth they can use in accessing and downloading
Content. These limitation are the implementation of a policy,
and where this policy is violated the server application may,
in some embodiments, restrict bandwidth usage by a par-
ticular client. Similarly, if a client were to violate a policy
relating to the manner in which Content were accessed (e.g.,
if they tried to crack or access unauthorized Content) this too
could require that a client’s access to the server be restricted
or denied. In short, in some embodiments, where a policy is
violated, the server application may restrict a client from
accessing the server application.

A Database Level for the Server Application

In addition to the Head and Shred Record Data tables
disclosed above, in some embodiments, additional data
tables are implemented to allow for the tracking of such
things as user information, profiles, purchases and other
information related to users of the server, client and related
applications. In some embodiments, each module and ser-
vice is supported by one or more pre-defined tables within
the database. Client applications know these table defini-
tions and submit records to them, which are acted upon by
related modules/services. Upon being acted upon by these
related modules/services, the results of various manipula-
tions (e.g., selects, calculations) of these records are posted
back to the same or related tables where the client applica-
tion retrieves them and responds accordingly. In some
embodiments, these manipulations are carried out using
SQL, whereas in other embodiments another means of
manipulating these records is used.

The specific supporting tables are derivatives of the basic
tables described below, and may contain additional fields
and properties specific to compiled version of the server.
These basic tables might include, in some embodiments,
data fields relating to UserlD, UserName, LastName, First-
Name, Password, SocialSecurityNumber, DateofBirth,
CreditCardNumber, and other personal information. Many
of the database tables will vary based upon the commercial
or non-commercial uses to which the server application is
put. For example, in some embodiments, where Content is
purchased, a data field will be maintained on the server
application that contains billing data (e.g., a BillingData
field). A BillingData field may, however, be absent from
non-commercial embodiments of the present server appli-
cation. The manner in which customer data used in elec-
tronic commerce are modeled, stored to, and retrieved from

US 7,237,268 B2

37

a database and associated tables is well known in the art.
(See Database Systems: Design, Implementation, and Man-
agement, 5" Edition, by Peter Rob & Carlos Coronel,
Course Technology, 2001.)

A Client Application

In some embodiments, a first and second computer system
are configured in a server-client relationship (see above
description). Server and client applications are run on the
first and second computer systems respectively. These appli-
cations, in some embodiments, are written in an object
oriented programming language including C++, CH™,
Java™, Delphi™, or the like. Once written, a unique private
key value is embedded into the client application to uniquely
identify the client application. The application along with
the embedded key value are then compiled or interpreted as
is known in the art. In the server-client relationship, the
client requests Content from the server. This Content is
streamed to the client via a LAN, WAN or Internet. Users of
the client or server application will interact with the server
or client computer systems via various GUIs. In some
embodiments, Content is decrypted, reassembled and placed
into a buffer for use by a player application or device present
in a client application.

In some embodiments, this Content is played as a track or
distinct selection from a sound recording as opposed to a
file. These tracks are displayed instead of a WAV, ATI,
MPEG, or some other file known in the art. Once accessed
by the client application, these tracks have various digital
rights associated with them. In some embodiments, these
tracks are aggregated into one or more play lists. In at least
one embodiment, these play lists can be searched by artist,
genre, album title, and a variety of other methods.

A Client Application Interface

In some embodiments, a client-application-file-transfer
interface is implemented, while in some embodiments a
player-application interface is implemented. FIG. 24 depicts
this file-transfer GUI interface 2400 as it would appear in a
window frame on a computer monitor 110. In some embodi-
ments, this GUI is written using an object oriented-program-
ming language as disclosed above. In some embodiments, a
file-transfer interface 2401 is implemented in the form of a
GUI. In some embodiments, this interface is implemented to
transfer and display Content that was previously stored as
text-file format such as PDF, DOC, TIFF or TXT just to
name a few. A login 2402 button is used to bring up a dialog
box that logs one into a private and encrypted network
creating a connection between a local and network database.
In some embodiments, a log out 2403 button is used to
disconnect the client application and local database from the
network database. In some embodiments, a local 2404
button is implemented to allow a user to change the main
window view to show the local database view. In still further
embodiments, an online 2405 button is implemented to
allow for a user to change the main window view to show
the online database view. A mail 2406 button is imple-
mented, in some embodiments, to allow one to change the
main window view to show a window allowing for a user to
send and receive email. In one embodiment, a mail-check
button 2407 is implemented to allow a user to check for any
new email. In still a further embodiment, a new-mail button
2408 is implemented to allow a user to send new email. In
at least one embodiment, a sweep toggle button 2409 is
implemented that starts or stops a search for any new email.
In some embodiments, a reserved button 2410 is imple-
mented that reserves a space in the GUI for future function-
ality. In some embodiments, a setup button 2411 allows a
user to specify a username and password with an option to

20

25

40

45

60

65

38

store the password. In at least one embodiment, a help button
2412 is implemented for bringing up a help dialog box with
information about the application. In some embodiments, a
local database navigation grid with refresh and filter buttons
2415 is implemented. In at least one embodiment, a local
database view or window 2414 is implemented. In some
embodiments, a detail-view buttons 2424 and 2426 are
implemented to toggle between the interfaces to either show
or hide the local explorer view. When hidden, just the local
or online database will show full screen. When shown, the
local explorer view will be on top and split into two sections,
the “My Drives & Folders” section 2425 and the “My Files”
section 2429. The bottom half of the screen will then be
placed to the fore depicting the local or online database
view. In some embodiments, various buttons implementing
file functions are implemented including an edit-file button
2416, a view-file button 2417, a save-to-file button 2418, a
refresh-file from original source button 2419, and a delete-
file button 2420. In addition to the various buttons 2422
related to uploading files to a server, there are description
fields 2421 and 2423 (i.e., grid Header fields) describing this
functionality. Additionally, there is a file folder description
2413 relating to the particular local database and its orga-
nization. In some embodiments, an import button 2427
provides one the ability to import any file that is selected
from the My Files section. When imported, the file is entered
into the local database in the import section. And again,
when imported, the file can be given a specific name and
have notes tagged along with it including: Filename,
Description, Notes, Date/Size, and Send Message. In some
embodiments, a My Drives & Folders 2425 window is
implemented that displays the hierarchical structure of files,
folders, and drives on a computer. It also shows any network
drives that have been mapped to drive letters (e.g., A, C, or
D) on a computer. Using a browser such as Windows
Explorer™ or Mozilla FireFox™ one can copy, move,
rename, and search for files and folders. In at least one
embodiment, a My Files 2429 window displays the contents
of a selection from the folder selected in 2425. From My
Files 2429 files can be imported by selecting a file and
clicking the import button 2427 or by just dragging and
dropping the file into the local database window 2414. By
performing a right-click in this window all the functionality
of the standard Windows Explorer™ or Mozilla FireFox™
browser is imported. In some embodiments, a various view
option buttons 2428 is implemented that has four choices for
display options of the My Files 2429 window. One can view
the My Files 2429 window as large icons. One can view the
My Files 2429 window as small icons. One can view the My
Files 2429 window as a list view. One can view the My Files
2429 window as a details view.

While not displayed, in some embodiments, additional
functionality is also envisioned. For example, various func-
tionalities are associated with the mail 2406 button are
envisioned. As disclosed above, this button 2406 allows one
to change the main window view to show a window allow-
ing a user to send and receive email. In many ways this
window is a form of integrated messaging functionality
implemented via a GUI that allows a user to communicate
with other users, artists (i.e., musical artists and other
creators of digital content), publishers and their related
websites. Optionally included are embedded voice and video
support which can serve to augment traditional text-based
forms of communication. Some of the specific functionality
displayed in this window includes various mail options such
as: in box, out box, message preview, contacts, and contact
groups. An additional, second window displays links for

US 7,237,268 B2

39

send/receive, new message, reply, reply all and forward
options and associated functionality. This functionality is
implemented with various buttons/GUIs. More specifically,
the inbox displays all messages received through the net-
work. Message preview allows a user to highlight a message
in the inbox, and have a preview of that message displayed
without having the entire message displayed for viewing. An
outbox shows all messages that have been sent or are
currently ready to be sent. A send/receives window and
associated button/GUI sends all messages in outbox that
have not yet been sent, while it receives any message
available on the Network server and brings them into the In
Box.

FIG. 25 depicts a player application GUI 2500 and the
associated functionality. In some embodiments, this GUI is
written using an object oriented-programming language as
disclosed above. In some embodiments, this interface is
implemented to transfer and play Content that was previ-
ously stored in a MP3, MPEG, JPEG, WAV or AAC file
format just to name a few. In some embodiments, this player
application can play Content previously stored in one of the
above mentioned file formats. In some embodiments, this
player application itself can shred, encrypt and store to a
database any of the above mentioned file formats using
methods and data structures outlined above. In some
embodiments, various media player control buttons 2501 are
displayed including play, pause, stop, back, next view.
Additionally, displayed, in some embodiments, are a track-
name display 2502, a track-length window 2503, a track-
remaining window 2504, and a graphical representation
2505 of the music being played. In some embodiments, a
MyMusic 2506 button is displayed that when executed will
display audio Content available in an embedded database, or
from a USB 101, or native storage drive (e.g., optical drive
102, floppy drive 103, tape drive 104, or magnetic drive 105)
and associated physical media (e.g., CD-R, CD-RW, CD,
DVD-R, DVD, floppy disk, or tape). In some embodiments,
an online 2507 button is displayed that when executed will
allow one to access audio Content from an online server. By
using this online button, a user can connect to a particular
server using the server’s IP address and, depending on the
user’s privileges, access Content on this server. In some
embodiments, this Content can be accessed via paying a use
fee. In one embodiment, a shared 2508 button is imple-
mented that allows one computer system to connect to
various other computer systems in a peer-to-peer configu-
ration, or client-server configuration. The audio and video
Content available on these other servers will be displayed
once a connection to another computer system is made. A
create-mail 2509 button is implemented, in some embodi-
ments, whereby one can create a new email message. In one
embodiment, a send-email 2510 button is implemented to
send new email. In some embodiments, a respond-email
button 2511 is implemented to send a responsive email
message. In one embodiment, a mail-login 2512 button is
implemented to allow one to log into a mail system, and a
mail log out 2536 button is implemented to allow one to log
out of the system. In still one other embodiment, a drop zone
2513 area is disclosed that provides a region into which
audio or video files can be placed and automatically shred-
ded, encrypted and stored into the application’s database for
future use. In at least one embodiment, a mute 2516 button
is implemented to allow one to mute the output of the player
application 2500. In some embodiments, a refresh 2534
button is implemented to fresh the audio and video Content
information displayed in the track window 2532. In some
embodiments, a help 2515 button is displayed that allows a

10

15

20

25

30

35

40

45

50

55

60

65

40

user to request information relating to how to use or access
various functions associated with the player application. In
still one other embodiment, a slide bar 2535 is implemented
that allows a user to view the visible track information, even
where this track information is not viewable in the entire
track window 2532. In some embodiments, a systems diag-
nostics window 2526 is implemented that allows one to
review such things as bandwidth usage, and storage space
used among other things. In at least one embodiment, a
track-history icon 2525 is displayed that allows a user to see
a grid view or list of the most recently played tracks. In some
embodiments, a heart icon 2517 button is implemented that
allows one to access a grid view or list of favorite or most
played tracks. In some embodiments, a now-playing icon
2518 is provided that allows one to access a grid view or list
information relating to the track that is presently being
played. In at least one embodiment, a play-list icon 2519 is
available that allows a user to review a grid view or list of
various play list. In some embodiments, a genre 2520 button
is implemented that allows one to sort tracks according to
genre, and will disclose a grid view of the number of tracks
that are accessible in each genre. In some embodiments, an
artist 2521 button is available that allows one to search for
the names of artist available and displays a grid view or list
ot how many tracks for each artist is available. In at least one
embodiment, an album 2522 button is implemented that
allows a user to search by album title, and once found
displays a grid view or list of the search results. In some
embodiments, a track 2523 button is implemented that
allows a user to review the number of tracks available, and
review the tracks by name, artist, album and other relevant
information. These tracks are displayed as a grid view or list.
In some embodiments, a series of audio Content presets
2538 numbered one (1) through nine (9) is disclosed that
allow one to instantaneously access audio or video Content
stored on a play list, where the audio or video Content is
numbered one (1) though nine (9). Additionally pictured to
the right of the presets 2538 is a track-progress bar whereby
the progress of a track in terms or what portion of it has been
played is tracked. In one embodiment, a data options bar
2527 is displayed whereby moving right to left, a new play
list icon is disclosed that allows one to access a new play list.
Next, an edit-track-information list is disclosed. Then, a
remove-track icon is displayed (i.e., a database icon with a
minus symbol), and add-track icon are displayed (i.e., a
database icon with a plus symbol) for adding and removing
tracks from a play list. Additionally, to the left of the add
track button, a scan button is provided to allow one to scan
the computer system onto which the application is running
for additional audio or video Content. Additionally con-
tained on the data-options bar 2527 are some icons relating
to an upload icon 2528 for uploading tracks from the
computer system running the client application to another
computer system connected to the computer system running
the server application via a network. Directly to the right of
the upload icon 2528 is, in some embodiments, a burn icon
for burning tracks to a physical media such as a CD-RW,
CD-R, DVD-R, or the like. To the right of the burn icon is
a save-tracks icon used to save tracks to a particular type of
physical storage media such as a floppy drive or flash
memory. In some embodiments, the ability to burn or save
tracks will be determined by the digital rights associated
with a particular target file. In at least one embodiment, the
track window 2532 is broken up into a grid type format with
a track title heading 2529, track artist heading 2530, and
album heading 2531 are displayed in a grid type format. In
some embodiments, a graphical representation 2533 is pro-

US 7,237,268 B2

41

vided relating to how much Content is remaining to be
played. In at least one embodiment, a series of display
buttons 2537 are provided, with the right-most button acting
as a selector to show tracks in columns, providing a grid
display of tracks by genre, artist, and albums. To the left of
this selector button is a group-track button that groups tracks
by genre and subdivided these genres by artist in the genre.
To the left of this group-track button is a selector button that
divides up the Content by individual tracks, artists and
albums. In some embodiments, a title 2524 text box is
implemented that allows for a lexigraphic search of the track
library, whereby text is entered into the text box and the most
lexigraphically similar track title is returned as a search
result. In some embodiments, a track-number search can be
implemented, wherein a track text box is used to input data
related to the number of a track. Once inputted, this data is
used to search for the track corresponding to the track
number.

FIG. 26 is a schema of a player application GUI 2600 with
added functionality to enable the user of the player appli-
cation to make queries of general information regarding the
network to which it is logged into. A functionality bar 2601
provides various buttons that allow a user to elicit informa-
tion from the network. A home button 2602 allows one to
access information regarding the company that is running
the network upon which the player application is logged
onto. A music button 2603 allows a user to see a list of all
available songs and sorting options for these songs, includ-
ing the ability to sort by titled, genre, artist, or album just to
name a few of the options. GUI 2600 is the result of music
button 2603 being executed. A user may then play any of the
songs listed. In some embodiments, these songs are avail-
able off of the network. A user button 2604 allows a user to
access user-base information and general-user information.
An activity button 2605 allows a user, including server
administrators, to review the activity of a user using a
particular server during a specific time period. An incident
report button 2606 allows persons to review various reported
incidents including violations of network policies, security
breaches, cracking reports, hacking reports, and the like.

FIG. 27 is a schema of the resulting window 2701 and
associated home GUI 2700 that is generated when a home
button 2602 is executed. Window 2702 titled news is gen-
erated to show news related to the network, or advertise-
ments may also be posted in this window. A window 2703
is provided to allow for information relating to the party
running the network may also be posted. A button 2704 is
implemented to allow for information relating to network
policies to be displayed. A frequently asked questions button
(FAQ) 2705 is implemented that allows a user to seek
answers to various frequently asked questions regarding the
player application and associated network with which the
player application interacts. An about-us button 2706 is
implemented that, when executed, displays information
relating to the network and person or persons running the
network.

FIG. 28 is a schema of the resulting window 2801 and
associated GUI 2800 that is generated when a user button
2604 is executed. Displayed are fields relating to Userld
2802, UserName 2803, LastName 2804 of the user, First-
Name 2806 of the user, a field 2807 relating to when the
users account expires, and field 2808 disclosing whether the
user’s account is active.

FIG. 29 is a schema of a GUI 2900 that is generated when
an activity button 2605 is executed. This GUI 2900 is
displayed as a window 2901 with various fields displaying
data relating to user activity. Example fields include: an Id

20

25

40

45

60

65

42

field 2902 disclosing the ID number of a user, a data field
2903 showing when the last time a user logged into the
system was, a description field 2904 showing what that user
did when they logged into the system (i.e., what application
they used), and a UserName 2905 showing who the user was
based upon privileges identity.

FIG. 30 is a schema of a GUI 3000 displayed as a window
3001 that results from a user executing an incident button
2606. As described above this window will display incidents
relating to network news relating to security issues, breaches
and the like.

A Logic Level for the Client Application

In some embodiments, once decrypted the unencrypted
shredded digital content is passed to the buffer of a player
application. Once in this buffer, the digital content is then, in
the case of music played, or in the case of visual content
displayed. In some embodiments, at no time is the unen-
crypted shredded content available as a complete file.

In some embodiments, Content is requested by a client
application from a server application. The process for mak-
ing this request and supplying this Content is as follows. The
identity of the client application is verified using one of the
above described methods. Once the client is verified, the
record for the requested Content is identified in the Header
table using a FileID 401 value, and an output stream is
initialized. This record is then inputted into the output
stream. Additionally, the records possessing the correspond-
ing FileID 401, 415 values contained in the Shred record are
also identified and appended to the output stream. As dis-
closed above, for each Shred record there is a ChunkID 414
value used to establish the priority of the record in the
overall piece of digital content. This ChunkID 414 value
allows Content to be placed into the output stream in a
random order relative to the order of priority in the original
file or piece of digital content. Once these records are
appended to the output stream, they are sent to the client
application and specifically the buffer of the client applica-
tion or device. These records are then sorted into a descend-
ing or ascending order based upon the ChunkID 414 value
using some sorting algorithm known in the art. (See A/go-
rithms in C++ Parts: 1-4, 3 Edition, by Robert Sedgewick,
Addison-Wesley, 1998.) Once sorted they are decrypted and
played or viewed by the player application or device.

A Database Level for the Client Application

In some embodiments, the above disclosed Header and
Shred Record data tables are implanted in the client appli-
cation as an embedded database is used to store Content. In
still other embodiments a separate database platform is
utilized. The tables contained in these databases are typically
written using SQL. Similarly, the search, retrieval and
storage of data to these tables are typically also made using
SQL. The manner in which Content is decrypted, reas-
sembled and played or viewed is described above, but may
be limited by the digital rights associated with a particular
piece of Content. Specifically, in some embodiments, a
client may or may not have the right to make copies, view,
play, or execute any number of other rights associated with
a particular piece of Content. These rights, as reflected in the
data field of the Header record, determine what can be done
with a particular piece of Content.

A System of Transmission Between a Server and Client

In some embodiments, the present invention utilizes the
above referenced TCP/IP protocol stack. A system of data
transmission between a server and client can be described as
a series of roughly five layers described as a: physical layer,
data link layer, network layer, transport layer and application
layer (i.e., collectively the Transport Layers). (See Open

US 7,237,268 B2

43
System Networking: TCP/IP and OSI, by David M. Pisci-
tello & A. Lyman Chapin, Addison-Wesley, 1993.) In some
embodiments, the present server and client applications
reside on the application layer of the TCP/IP protocol stack.
In some embodiments, the present application utilizes
hyper-text-transfer protocol (HTTP) to transmit the Content
between the server and client applications, whereas in other
embodiments another protocol known in the art is utilized.
In still other embodiments, another application utilizing a
protocol standard such as ATM is used where, for example,
a DSL is utilized for the transmission and receipt of Content.

In some embodiments, the only form of encryption pro-
tection is that provided by the initial Encryption Engine
(e.g., 903, 2214, 2216), whereas in some embodiments, a
secure-hyper-text transfer protocol (HTTPS) is used, a Ker-
beros-based network authentication protocol or some other
method for protecting the transferred Content and authenti-
cating the identity of the client requester is used.

In some embodiments, a detection application or code
module is implemented to prevent the loss of transmitted
shredded, encrypted data due to a stream-ripping program.
Stream-ripping programs are well known in the art and are
programs implemented to capture streamed digital content,
and rip or compress this content into a more generally used
or accessible format. For example, some stream ripping
programs will capture audio content formatted in as WAV
file and convert it to a new file in an MP3 format. In some
embodiments, this detector application will sniff or search an
internet connection, prior to sending shredded, encrypted
data along this connection, looking for stream ripping pro-
grams being used. If a stream-ripping program is detected,
the detector program will disconnect and, in some embodi-
ments, shut down the server and/or client applications.

In some embodiments, a server and client application
possess the same embedded private key. In some embodi-
ments, this private key value is assigned to both the server
and client applications at compile time and an embedded
private key is created. Once this embedded key is created,
the client application or device is free to login to the server
device and have its identity verified by virtue of its posses-
sion of the private key value. In some embodiments, once
the client identity is verified, the client and server are free to
exchange communications and in particular the client is free
to request Content. Put another way, once the embedded key
is verified, the private keys for each piece of Content are
automatically tracked by the Encryption Engines for the
server and client applications.

In some embodiments, each piece of Content is sent by
the server application to the client application or device in an
order that is random relative to how each piece of Content
exists in the original file. Once requested, the Content is
transported from the client to the server application via the
Transport Layers. In some embodiments, the actual order in
which the Content is sent can be varied such that it can be
sent in a sequential or random order based upon the FileID
401 or ChunkID 414 values. As described above, once this
Content is received by the client application, it is sorted,
decrypted, and played by the client application or device.

In some embodiments, an extensible-markup language
(XML) and associated schema is used to tag the encrypted
data prior to transmission as is known in the art. (See XML
for the World Wide Web, by Elizabeth Castro, Peachpit Press,
2000; Data on the Web: From Relations to Semistructured
Data and XML 1°7 Edition, by Serge Abiteboul, Peter
Buneman, & Dan Suciu, Morgan Kaufmann, 1999.) In this
embodiment, the various schema types, whether built in or

10

15

20

25

30

35

40

45

50

55

60

65

44

custom defined, will reflect the data structures and fields
depicted above for the Header Data table and Shred Record
Data table.

FIG. 31 depicts a schematic of a client-server relationship
3100. In this schematic, a client computer system 3105
requests a piece of digital content titled EXAMPLE.PDF
3102 via an Internet 3103. The server 3101, in turn, supplies
three pieces of Content 3104 that make up EXAMPLE.PDF.
These pieces of Content are supplied via an Internet 3103 to
the requesting client computer system 3105.

In some embodiments, the application protocol is pro-
vided by the database system itself such that no intermediate
application or application programming interface (API) is
needed to connect the database and a client application. In
such an embodiment, a native protocol driver exists to make
direct calls to a server database using a specified protocol. In
some embodiments, the database table itself is recognized as
having an Internet protocol address. The use of native
protocol drivers to replace intermediate applications or APIs
in accessing databases is well known in the art. (See
Delphi/Kylix Database Development DataCLX for Windows
and Linux 1% Edition, by Eric Harmon, Sams, 2001.) In still
other embodiments, an API such as Java Database Connec-
tivity (JDBC) is needed to communicate with a database
application (i.e., the ODBC programming interface) and to
link to the Transport Layers or other applications and
ultimately the client application.

FIG. 32 is a schematic depicting an application-level view
3200 of the modules making database calls. In this embodi-
ment, a requesting client application 3205 makes a request
for a piece of digital content titled EXAMPLE.PDF 3206.
The request is made via an Internet 3203. A native-protocol
driver 3202 receives this request, accesses a server database
3201 and supplies the three pieces of Content 3204 that
make up EXAMPLE.PDF 3206.

An Application of Digital Content Shredding, Encryption,
and Storage Within the Server-Client Paradigm

In one example of an application of the present invention,
a JPEG file is stored onto the physical storage media of a
computer system such as a server. The Content Management
Module then takes this JPEG file and shreds the JPEG file
into multiple shreds of a predetermined size. In some
embodiments, the drag and drop feature common to a GUI
are employed to load the JPEG file into the Content Man-
agement Module. These drop-in-drag functions, if a GUI is
to be used, are carried out using a keyboard 113 and/or
mouse 112 input devices. Once shredded, the shredded
pieces are encrypted with one of the aforementioned sym-
metric key algorithms and saved into the table of a database
application. In some embodiments, this is an embedded
database application, whereas in other embodiments this is
a stand alone database application or platform. In some
embodiments, privileges are set determining the ability of
one to access, copy (i.e., setting the number of copies that
can be made), distribute or use (i.e., restricting the types of
devices and application that can use the Content) the shred-
ded digital content (i.e., the digital rights are set or estab-
lished). These privileges can be set before, during or after
the shredded digital content is stored to the database table.
Upon being saved into the table, any one of a number of
actions can be performed on the Content. The Content can
be exported back to into the system or to a client of the
server as a complete file (i.e., as the original JPEG). The
Content can be requested by a client, and based upon the
privileges the Content can be played, copied, exported back
into its original JPEG format, or distributed. Additionally,
once the Content is generated, the original JPEG file may be

US 7,237,268 B2

45

discarded. In some embodiments, in situations where the
Content is requested by a client device, the Content is
transmitted via an Internet using the Transport Layers of
TCP/IP in individual encrypted packets. In some embodi-
ments, a WAN, LAN or Internet is used to transfer the
requested Content. Once the Content is received by the
client application the client is free to use the Content based
upon the assigned privileges described above. In some
embodiments, however, the Content will be stored into the
tables of a database application.

In some embodiments, where a user seeks to re-assemble
the Content into, for example a JPEG file the process is as
follows regardless of whether the file is taken from a
physical storage media or from a network or memory
stream: First, a Header record is selected from the Header
Data Table. Next, an output stream is initialized as is
commonly known in the art. Then, the Content field of the
Header Data record is copied to the output stream. An
iterative or recursive method is then used to decrypt and
append the Content field from each Shred Record table
record to the output stream. Lastly, the output stream con-
tents are copied to the destination object. In the case of a file
the output is saved to a file of a user-determined name and
location. In the case of a destination stream the output
stream data is simply copied to the destination stream. In
some embodiments, each Shred Record is indexed by a
FileID 401 and/or ChunkID 414 values, and can be sorted
based upon these values. Where these values are not avail-
able, the chunk records would have to be access and
delivered to the output stream sequentially, using an iterative
or recursive method.

Application Functionality Associated with the System

In some embodiments, a functionality suite is available to
both server-side and client-side users. There are a variety of
functions associated with this suite, including, but not lim-
ited to, a messaging module, a photo-management module,
a work-processing module, a spreadsheet module, and an
email module. Common to many of these modules are the
ability to generate, use and manipulate the above described
Content. These modules and associated functionality may be
used by either the client or server applications. These
various modules can be implemented into the system on an
as-needed basis. These modules may be written in an
object-oriented-computer language such that a component
oriented or object-oriented programming technique can be
implemented using, a Visual Component Library (VCL),
Component Library for Cross Platform (CLX), Java Beans
(IB), Java Enterprise Beans (EJB), or Component Object
Model (COM) just to name a few. Typically these modules
are linked to another program via various APIs and then
compiled into one complete server and/or client application.
The process for using modules in the building of client and
server applications is well known in the art. (See Component
Based Software Engineering: Putting the Pieces Together,
by George T. Heineman and William T. Council, Addison-
Wesley, 2001; Delphi Component Design, by Danny Thorpe,
Addison-Wesley, 1996.)

In some embodiments, a messaging module is written that
facilitates electronic communication between users by stor-
ing structured records within specific tables. The supported
formats include any combination of text, graphic, audio
and/or video data. Each message contains sender and recipi-
ent identifiers, date/time info, subject line, and various other
fields which may be unique to a particular compiled version
of the server application. In some embodiments, additional
functionality includes send, receive, reply and forward capa-
bilities, file-attachment support, and message-delivery noti-

10

20

25

40

45

60

65

46

fication. The sender can request a notification receipt upon
delivery of the message. In some embodiments, advanced
message formatting with support for graphics and tables,
supports all Rich Text formatting with an internal editor. In
some embodiments, a spell-check is included with customi-
zable dictionary. In still other embodiments, support for
embedded multi-media content is available. In some
embodiments, an attached microphone is available for users
to embed voice annotations. In some embodiments, a web
camera is available so as to allow users to embed video clips
into a message. In some embodiments, individual message
rights are determined by a sender. When a message is created
the author can decide if the recipient can copy or print, and
whether the message can be forwarded to other users.

In still other embodiments, the messaging module pro-
vides a private and secure channel for user-to-user commu-
nications. The system follows the model of e-mail, but uses
encryption to ensure privacy. In some embodiments, this
system differs from e-mail in that spamming is not possible.
The user has complete control over the “In Box,” and the
server cannot be spoofed because the only way to generate
messages is through an approved, verified client application.
The following features are also present: Rich text formatted
(RTF) messages allowing the user to utilize fonts, colors,
and graphics within a message Voice/Video enhancement
allows a recorded voice and/or video message to be embed-
ded within each message. In some embodiments, the system
has a voice-and-video recorder built into the message screen.
In some embodiments, by speaking into their microphone
and/or using a webcam a user can record a verbal/video
message in addition to the text. In some embodiments, the
recordings are high quality WAV and/or ATI files, maximum
length determined by an administrator. In some embodi-
ments, a contact management system allows the user to
maintain a list of other network users with whom they
correspond. Once entered the contact may be easily selected
as a message recipient. In some embodiments, group man-
agement allows any combination of contacts to be defined as
a group. The group may be used to send messages to all
members without having to select them individually. Group
naming and membership are completely user-defined. In
some embodiments, virus-exclusion technology makes the
system incapable of infection or unauthorized script control.
Added organizational fields further classify each message.
In some embodiments, message management is provided in
a grid which allows sorting, grouping by any column, and
custom filtering. In some embodiments, user-controlled
whitelist or blacklist methods allow or restrict access. In
some embodiments, the content of the various exchanged
messages is stored into one of the above databases as
shredded content.

In some embodiments, a word-processing module is
included. This module includes a full-scale text editor, with
all of the common features that users expect. The editor is
embedded into the application and does not rely upon any
third-party controls or plug-ins. In some embodiments, the
following features are included: text attribute formatting
(i.e., font, alignment, shading, backgrounds, indents, tab
stops, spacing, line and paragraph styles, numbering, bul-
lets), and a what-you-see-is-what-you-get (WYSIWYG)
display including a page layout view with multi page
preview. In some embodiments, table creation with borders
and styles is available, that include: insert, delete, column
width, merge cells and split cells. In some embodiments,
spell checking with dictionary support is provided. In some
embodiments, optional industry specific dictionaries are
supported, as are printer export to HTML, XML, or PDF. In

US 7,237,268 B2

47

some embodiments, the content of the documents and text
therein is stored into one of the above databases as shredded
content.

In some embodiments, a spreadsheet module is included
(i.e., a Workbook). This module is also embedded into the
application. In some embodiments, it provides file-level
compatibility with a spreadsheet program such as Microsoft
Excel™ (XLS). In some embodiments, a wealth of features
provides the user with all the control expected from a
full-featured spreadsheet. In some embodiments, the module
can read and write spreadsheet files allowing the user to
load, for example, XLS files and save data contained within
them to other XLS files—while maintaining the current
visual presentation (i.e., cell data formatting, cell styles,
etc.). In some embodiments, single or multi-page built-in
operators and functions supporting individual cell format-
ting are implemented. In some embodiments, customize cell
border styles, background & foreground colors, brush & font
attributes, vertical & horizontal alignment and text format-
ting is available. In some embodiments, cell-style control
including edge styles and fill patterns is available. In some
embodiments, cell management and merge/split cell func-
tions are available. In some embodiments, data sorting is
available that provides the ability to sort against one or more
columns, rows and column moving/resizing Multi-level
undo/redo WYSIWYG printing Server posting to allow
rights-based sharing with other users is available. In some
embodiments, the content of the various spreadsheets is
stored into one of the above databases as shredded content.

In some embodiments, a bulletin board module is imple-
mented that allows for news and information related to the
user community to be posted and accessible to all using the
system. In some embodiments, some of the functions asso-
ciated with this module include public file posting for
distribution of common files and assets, shared posting to
allow distribution to specific users, with individual rights for
each person, private posting to allow remote access to
personal user items, the posting of informational pages may
be maintained for each artist, album, user and server, inte-
grated messaging allows communication between users,
artists, publishers and sites, shared repositories allow users
to upload Content to a shared location for play-only access
by others, and shared play list support just to name a few. In
some embodiments, the content of the various bulletin board
postings is stored into one of the above databases as shred-
ded content.

In some embodiments, a photo-management module is
implemented. This module uses the above described data-
base technology to allow users to manage photos in most
popular formats. Each photo becomes part of a document
with additional fields to organize and catalog the collection.
Support for BMP, JPEG, and GIF formats is provided. In
some embodiments, a powerful grid display showing photos
and related data fields is available. In some embodiments,
standard image manipulation tools for rotating, resizing and
cropping are available. In some embodiments, a server
posting to allow for rights-based sharing with other users is
available. In some embodiments, easy universal device
connection and transfer with USB or Firewire™ is provided.
In some embodiments, the various photos are stored into one
of the above databases as shredded content.

In some embodiments, the present invention provides a
method for handling shredded and encrypted digital content
that includes sending a request to a server computer system
for a file that has been organized as one or more pieces of
the shredded and encrypted digital content in a database
associated with the server, receiving the content from the

20

25

40

45

60

65

48

server into a client computer system, sorting the received
content from the server in a buffer residing in the client
computer system, decrypting the sorted received content
using a decryption algorithm, and forwarding the decrypted
sorted received content from the buffer to another applica-
tion.

Some embodiments of the method further include assem-
bling the one or more pieces of shredded and encrypted
digital content in the client computer system.

In some embodiments of the method, the assembling
includes executing the following actions so long as the end
of a data table has not been reached and a file identifier value
from a first database table equals a file identifier value from
a second data base table: (reading a content field into a first
buffer, running a decryption function on the first buffer and
storing the resulting data into a second buffer, outputting the
second buffer to an application or device, and accessing a
next content field).

In some embodiments of the method, the assembling
includes executing the following actions so long as the end
of a data structure containing records has not been encoun-
tered: (initializing a memory location, reading a record
containing data from a database into the initialized memory
location, adding the initialized memory location to a second
data structure, executing the following action, if a file
identification value of the record stored in the memory
location equals a file identification value of a next record:
(initializing a second memory location, reading the next
record into the second memory location, and adding the
second memory location to the second data structure), and
accessing a further next record).

Some embodiments of the method further include ran-
domizing the order in which the shredded and encrypted
digital content is to be transmitted, and transmitting in the
randomized order one or more pieces of shredded and
encrypted digital content.

In some embodiments of the method, the receiving of
content occurs from an Internet via TCP/IP transport layers.

In some embodiments of the method, the receiving
including receiving one or more pieces of shredded and
encrypted digital content in a random order.

In some embodiments of the method, sorting includes
sorting the shredded and encrypted digital content.

In some embodiments of the method, the decrypting
includes using a symmetric decryption algorithm.

In some embodiments of the method, the decrypting
includes using an asymmetric decryption algorithm.

In some embodiments of the method, the decryption
includes using a hybrid-crypto algorithm.

In some embodiments of the method, the forwarding
includes forwarding sorted and decrypted digital content to
a player application.

In some embodiments of the method, the forwarding
includes re-shredding and re-encrypting the digital content,
and sending the re-shredded and re-encrypted digital content
to a database.

In some embodiments of the method, the decrypting of
received content is achieved using a private key that is an
attribute of the received content, and wherein the received
content is a binary large object.

In some embodiments of the method, during the process
of'assembling of the shredded and encrypted digital content,
an entire file of the digital content is never stored in any
buffer at one time.

In some embodiments, the present invention provides an
apparatus for handling shredded and encrypted digital con-
tent that includes: means for sending a request to a server

US 7,237,268 B2

49

computer system for a file that has been organized as one or
more pieces of the shredded and encrypted digital content in
a database associated with the server, means for receiving
the content from the server into a client computer system,
means for sorting the received content from the server in a
buffer residing in the client computer system, means for
decrypting the sorted received content using a decryption
algorithm, and means for forwarding the decrypted sorted
received content from the buffer to another application.

In some embodiments, the present invention provides a
system for handling shredded and encrypted digital content.
This system includes a client computer having a transmitter
that sends a request to a server for digital content that has
been organized as one or more pieces of shredded and
encrypted data and that is stored in a database associated
with the server, a receiver that receives the shredded and
encrypted digital content from the server into the client
computer system, a sorter that sorts the received digital
content, a decryptor that decrypts the sorted digital content
using a decryption algorithm, a buffer, and an assembler that
assembles the decrypted digital content into the buffer.

Some embodiments of the system further include an
assembler that assembles the one or more pieces of shredded
and encrypted digital content in the client computer system.

In some embodiments of the system, the assembler
executes the following actions so long as the end of a data
table has not been reached and a file identifier value from a
first database table equals a file identifier value from a
second data base table: (reading a content field into a first
buffer, running a decryption function on the first buffer and
storing the resulting data into a second buffer, outputting the
second buffer to an application or device, and accessing a
next content field).

In some embodiments of the system, the assembler
executes the following actions so long as the end of a data
structure containing records has not been encountered: (ini-
tializing a memory location, reading a record containing
data from a database into the initialized memory location,
adding the initialized memory location to a second data
structure, executing the following action, if a file identifi-
cation value of the record stored in the memory location
equals a file identification value of a next record: (initializ-
ing a second memory location, reading the next record into
the second memory location, and adding the second memory
location to the second data structure), and accessing a further
next record).

Some embodiments of the system further include a ran-
domizer that randomizes an order in which the shredded and
encrypted digital content is to be transmitted from the server
to the client computer, wherein the transmitter transmits in
the randomized order one or more pieces of shredded and
encrypted digital content.

In some embodiments of the system, the receiver is
operatively coupled to an Internet via TCP/IP transport
layers.

In some embodiments of the system, the receiver receives
one or more pieces of shredded and encrypted digital content
in a random order determined by the server.

In some embodiments of the system, the sorter sorts the
shredded and encrypted digital content to recover an original
order of the data.

In some embodiments of the system, the decryptor uses a
symmetric decryption algorithm.

In some embodiments of the system, the decryptor uses an
asymmetric decryption algorithm.

In some embodiments of the system, the decryptor uses a
hybrid-crypto algorithm.

10

20

25

30

35

40

45

55

60

65

50

Some embodiments of the system further include a for-
warder that forwards sorted and decrypted digital content to
a player application.

In some embodiments of the system further include a
forwarder that re-shreds and re-encrypts the digital content,
and sends the re-shredded and re-encrypted digital content to
a database.

In some embodiments of the system, the decryptor uses a
private key that is an attribute of the received content, and
wherein the received content is a binary large object.

In some embodiments of the system, an entire decrypted
file of the digital content is never stored in any buffer at one
time.

Some embodiments of the invention include computer-
readable media having executable instructions stored
thereon for causing a suitable programmed central process-
ing unit to handle shredded and encrypted digital content by
performing a method that includes: sending a request to a
server computer system for digital content that has been
organized as one or more pieces of the shredded and
encrypted digital content in a database associated with the
server, receiving the content from the server into a client
computer system, sorting the received content from the
server in a buffer residing in the client computer system,
decrypting the sorted received content using a decryption
algorithm, and forwarding the decrypted sorted received
content from the buffer to another application.

Some embodiments of the media further include instruc-
tions that facilitate assembling the one or more pieces of
shredded and encrypted digital content in a buffer, wherein
the assembling includes: executing the following actions so
long as the end of a data table has not been reached and a file
identifier value from a first database table equals a file
identifier value from a second data base table: (reading a
content field into a first buffer, running a decryption function
on the first buffer and storing the resulting data into a second
buffer, outputting the second buffer to an application or
device, and accessing a next content field).

Some embodiments of the media further include instruc-
tions that facilitate assembling the one or more pieces of
shredded and encrypted digital content in a buffer, wherein
the assembling includes: executing the following actions so
long as the end of a data structure containing records has not
been encountered: (initializing a memory location, reading a
record containing data from a database into the initialized
memory location, adding the initialized memory location to
a second data structure, executing the following action, if a
file identification value of the record stored in the memory
location equals a file identification value of a next record:
(initializing a second memory location, reading the next
record into the second memory location, adding the second
memory location to the second data structure, and accessing
a further next record)).

Some embodiments of the media further include instruc-
tions that facilitate assembling the one or more pieces of
shredded and encrypted digital content in a buffer, wherein
the assembling includes: executing the following actions so
long as the end of a data structure containing records has not
been encountered: (accessing a next record containing data
from a database, initializing a memory location, reading the
record containing data from a database into the initialized
memory location, adding the initialized memory location to
a second data structure, and executing the following action,
if a file identification value of the record stored in the
memory location has the same file identification value of a
next record: (initializing a second memory location, reading

US 7,237,268 B2

51
the next record into the second memory location, and adding
the second memory location to the second data structure)).

Some embodiments of the media further include instruc-
tions to facilitate: transmitting one or more pieces of shred-
ded and encrypted digital content, and randomizing the
order in which the shredded and encrypted digital content is
sent.

Some embodiments of the media further include instruc-
tions to facilitate the receiving of content from an Internet
via TCP/IP transport layers.

Some embodiments of the media further include decrypt-
ing instructions that implement a symmetric decryption
algorithm.

Some embodiments of the media further include decrypt-
ing instructions that implement an asymmetric decryption
algorithm.

Some embodiments of the media further include decrypt-
ing instructions that implement a hybrid-crypto algorithm.

Some embodiments of the media further include instruc-
tions to facilitate including forwarding the shredded and
decrypted digital content to a player application.

Some embodiments of the media further include instruc-
tions to facilitate forwarding instructions including:

re-shredding and encrypting the digital content, and

sending the digital content to a database.

Some embodiments of the media further include assem-
bling instructions whereby the one or more pieces of the
shredded and encrypted digital content is never stored as one
complete file in the buffer.

Some embodiments of the media further include instruc-
tions wherein the decrypting of digital content is achieved
using a private key that is an attribute of the digital content,
and the digital content is a binary large object.

Some embodiments of the invention include a method for
handling shredded and encrypted digital content, wherein
the method includes obtaining a dataset that includes digital
content, shredding the dataset into a plurality of shreds,
encrypting each of the shreds using one of a plurality of
encryption keys and storing each encrypted shred into a
database, receiving a request from a client for the digital
content that has been organized as a plurality of pieces of the
shredded and encrypted digital content in the database, and
transmitting the content from the database to the client.

In some embodiments of the method, the shredding
includes assigning a value to a chunk size, and executing the
following actions so long as an end-of-file condition has not
been satisfied: reading a portion of the data set correspond-
ing to the chunk size.

In some embodiments of the method, the shredding
includes: executing the following actions so long as an
end-of-file condition has not been satisfied: (incrementing a
value representing a number of chunks generated, assigning
a random value to a chunk size using a randomizer function,
executing the following action so long as the chunk size is
greater than the file size: (assigning a new random value to
the chunk size using a randomizer function, subtracting the
chunk size value from the file size value to obtain a resulting
value, assigning the resulting value to the file size value, and
reading a portion of the data set corresponding to the chunk
size into a buffer)).

In some embodiments of the method, the encrypting
includes: executing the following actions so long as an
end-of-file condition has not been satisfied: (obtaining a
shred, encrypting the shred to obtain an encrypted shred,
storing the encrypted shred into a database table as part of
a record, and assigning a numerical identifier value to the
record).

10

20

25

40

45

60

65

52

In some embodiments of the method, the encrypting
includes: executing the following actions so long as the end
of'a file has not been met: (obtaining a first shred, encrypting
the first shred to obtain a first encrypted shred, obtaining a
second shred, combining the first encrypted shred with the
second shred to obtain a combined shred, and encrypting the
combined shred).

In some embodiments of the method, the assembling of
the one or more pieces of shredded and encrypted digital
content is into a buffer of a computer system.

In some embodiments of the method, the assembling
includes: executing the following actions so long as the end
of a data structure containing records has not been encoun-
tered: (getting a next record containing data from a database,
initializing a memory location, reading the record containing
data from the database into the initialized memory location,
adding the initialized memory location to a second data
structure, executing the following action, if a file identifi-
cation value of the record stored in the memory location has
the same file identification value of a next record: (initial-
izing a second memory location, reading the next record into
the second memory location, and adding the second memory
location to the second data structure)).

In some embodiments of the method, the transmitting
includes: executing the following actions so long as the end
of a list has not been met: (getting a next record, generating
a new buffer equal or greater than in size to a new record
plus an old buffer, assigning the content from the old buffer
to a new buffer, assigning the content from the new record
to the new buffer).

In some embodiments, the present invention includes
computer-readable media having stored thereon a first data
structure comprising two or more of the following:

(a descriptor that includes a unique value used to deter-
mine a record identity within a table,

a descriptor including a join value,

a descriptor that includes the number of chunks in each
record,

a descriptor representing a predetermined size for each
chunk, and

a descriptor that includes actual shredded and encrypted
content derived based on the descriptor that includes the
predetermined size for each chunk).

In some embodiments, the present invention includes
computer-readable media having stored thereon a second
data structure comprising two or more of the following:

(a descriptor that includes a value representing a name of
a content publisher,

a descriptor that includes a value representing a URL of
an originating server,

a descriptor that includes a value representing a name of
the originating server,

a descriptor that includes a value representing whether or
not content may be edited,

a descriptor that includes a value representing whether a
content item may be copied,

a descriptor that includes a value representing whether a
content item may be viewed,

a descriptor that includes a value representing whether a
content item may be forwarded to another user,

a descriptor that includes a value representing whether a
content can be shared with others for read-only usage,

a descriptor that includes a value representing whether a
content item may be placed on removable physical media,

a descriptor that includes a value representing the number
of times a content item can be recorded to removable media,

US 7,237,268 B2

53

a descriptor that includes a value representing whether a
content item may be moved onto a portable device,

a descriptor that includes a value representing whether a
content item is on-loan,

a descriptor that includes a value representing whether a
content item is restricted until purchase,

a descriptor that includes a value representing when a
demonstration usage expires, and

a descriptor that includes a value representing whether a
user must login before accessing a content item).

In some embodiments, the present invention includes
computer-readable media having stored thereon a first data
structure comprising two or more of the following:

(a descriptor that includes a value representing unique file
identifier,

a descriptor that includes a value representing a file name
and extension,

a descriptor that includes a value representing date and
time when a record was created,

a descriptor that includes a value representing a total size
of the file,

a descriptor that includes a value representing the name of
a target file,

a descriptor that includes a value representing a file
extension,

a descriptor that includes a value representing a number of
chunks required to completely shred the target file,

a descriptor that includes the number of chunks within a
record,

a descriptor that includes a predetermined size for each
chunk, and

a descriptor that includes data having actual shredded and
encrypted content derived based on the descriptor that
includes the predetermined size for each chunk and the
descriptor indicating the file size).

In some embodiments, the present invention includes
computer-readable media having executable file-transfer
instructions stored thereon for causing a suitable pro-
grammed central processing unit to handle shredded and
encrypted digital content by performing a method that
includes: generating in a graphical user interface an appli-
cation window having a window frame and a plurality of
stiles to define a plurality of panes within the frame, dis-
playing in a first one of the panes a user selectable index of
a plurality of physical media, displaying in a second one of
the panes first selected physical media from the user select-
able index, and displaying in a third one of the panes second
selected information for a database.

In some embodiments, the present invention includes
computer-readable media having executable media-player
application code stored thereon for causing a suitable pro-
grammed central processing unit to handle shredded and
encrypted digital content by performing a method compris-
ing: generating in a graphical user interface an application
window having a window frame and a plurality of stiles to
define a plurality of panes within the frame, displaying in a
first one of the panes user selectable specific track informa-
tion, displaying in a second one of the panes user generated
track list information, and displaying in a third one of the
panes specific track information.

In some embodiments, the present invention includes
computer-readable media having executable server applica-
tion code stored thereon for causing a suitable programmed
central processing unit to handle shredded and encrypted
digital content by performing a method comprising: gener-
ating in a graphical user interface an application window
having a window frame and a plurality of stiles to define a

10

15

20

25

35

40

45

60

65

54

plurality of panes within the frame, displaying in a first one
of'the panes two or more of the following simultaneously: (a
user-selectable general settings button, a user-selectable
protocols and network settings button, a user-selectable
alias-management button, a user-selectable user-manage-
ment button, a start button, a new session check box, refresh
rate text box with an incrementing value, a server name text
box, a stop button, a padlock icon, and a running icon).

In some embodiments, the present invention provides a
method for handling shredded and encrypted digital content
comprising: manipulating digital content in the form of text
with a word processing module, manipulating digital content
in the form of numeric values and text with a spreadsheet
module, manipulating digital content in the form of photos
with a photo management module, manipulating digital
content in the form of messages between users with a
messaging module, and manipulating digital content to be
posted for use by multiple users with a bulletin board
module.

In some embodiments, the manipulating text with a word
processing module includes: displaying the text with a
WYSIWYG type display, writing the text, editing the text,
checking the text with a spell checker, and storing the text
into a database as shredded and encrypted digital content.

In some embodiments, the manipulating numeric and text
values with a spreadsheet module includes: displaying the
numeric and text values with a WYSIWYG type display,
performing various arithmetic calculations using the
numeric values, displaying the results of these various
arithmetic calculations on the display, and storing the
numeric and text values into a database as shredded and
encrypted digital content.

In some embodiments, the manipulating photos with a
photo management module includes: displaying one or more
photos in an array, rotating the photos, resizing the photos,
and cropping the photos, and storing the photos into a
database as shredded and encrypted digital content.

In some embodiments, the manipulating messages
between users with a messaging module includes: sending
messages from a first user, and receiving messages by
second user.

In some embodiments, the sending of messages is in the
form of text, graphic, audio, video, audio-video data.

In some embodiments, the manipulating digital content to
be posted for use by multiple users with a bulletin board
module comprises: posting messages to a computer bulletin
board, and grouping these messages according to the content
of the messages.

In some embodiments, the manipulating digital content to
be posted for use by multiple users with a bulletin board
module comprises modifying fonts, color, or graphics of the
message posted on the bulletin board.

In some embodiments, the manipulating digital content to
be posted for use by multiple users with a bulletin board
module comprises posting audio digital content.

In some embodiments, the manipulating digital content to
be posted for use by multiple users with a bulletin board
module comprises posting audio-video digital content.

In some embodiments, the manipulating digital content to
be posted for use by multiple users with a bulletin board
module comprises posting video digital content.

In some embodiments, the present invention provides
computer-readable media having executable instructions
stored thereon for causing a suitable programmed central
processor unit to perform a method comprising: manipulat-
ing shredded and encrypted digital content in the form of
text with a word processing module, manipulating shredded

US 7,237,268 B2

55

and encrypted digital content in the form of numeric values
and text with a spreadsheet module, manipulating shredded
and encrypted digital content in the form of photos with a
photo management module, manipulating shredded and
encrypted digital content in the form of messages between
users with a messaging module, and manipulating shredded
and encrypted digital content to be posted for use by
multiple users with a bulletin board module.

Some embodiments further include instructions for a
word processing module to manipulate shredded and
encrypted digital content in the form of text through: dis-
playing the text with a WYSIWYG type display, writing the
text, editing the text, and checking the text with a spell
checker, and storing the text into a database as shredded and
encrypted digital content.

Some embodiments further include instructions for a
spreadsheet module to manipulate shredded and encrypted
digital content in the form of numeric and text values
through: displaying the numeric and text values with a
WYSIWYG type display, performing various arithmetic
calculations using the numeric values, displaying the results
of these various arithmetic calculations on the display, and
storing the numeric and text values into a database as
shredded and encrypted digital content.

Some embodiments further include instructions for a
photo management module to manipulate shredded and
encrypted digital content in the form of photos through:
displaying one or more photos in an array, rotating the
photos, resizing the photos, cropping the photos, and storing
the photos into a database as shredded and encrypted digital
content.

Some embodiments further include instructions for a
messaging module to manipulate shredded and encrypted
digital content in the form of text, graphic, audio, video or
audio/video data.

Some embodiments further include instructions for a
messaging module to manipulate shredded and encrypted
digital content in the form of text, graphic, audio, video or
audio/video data through: sending messages from a first
user, and receiving messages by second user.

Some embodiments further include instructions for a
bulletin board module to manipulate shredded and encrypted
digital content in the form of text through: posting messages
to a computer bulletin board, and grouping the messages
according to the content of the messages.

Some embodiments further include instructions for a
bulletin board module to manipulate shredded and encrypted
digital content in the form of text comprises modifying the
text fonts, color, or graphics.

Some embodiments further include instructions for a
bulletin board module to manipulate shredded and encrypted
digital content in the form of audio digital content posted to
a computer bulletin board.

Some embodiments further include instructions for a
bulletin board module to manipulate shredded and encrypted
digital content in the form of audio-video digital content
posted to a computer bulletin board.

Some embodiments further include instructions for a
bulletin board module to manipulate shredded and encrypted
digital content in the form of video digital content posted to
a computer bulletin board.

It is to be understood that the above description is
intended to be illustrative, and not restrictive. Although
numerous characteristics and advantages of various embodi-
ments as described herein have been set forth in the fore-
going description, together with details of the structure and
function of various embodiments, many other embodiments

10

20

25

30

35

40

50

60

65

56

and changes to details will be apparent to those of skill in the
art upon reviewing the above description. The scope of the
invention should be, therefore, determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled. In the appended claims,
the terms “including” and “in which” are used as the
plain-English equivalents of the respective terms “compris-
ing” and “wherein,” respectively. Moreover, the terms
“first,” “second,” and “third,” etc., are used merely as labels,
and are not intended to impose numerical requirements on
their objects.

What is claimed is:

1. A method for handling shredded and encrypted digital
content comprising:

manipulating digital content in the form of text with a

word processing module;

manipulating digital content in the form of numeric values

and text with a spreadsheet module;

manipulating digital content in the form of messages

between users with a messaging module; and
wherein each of the digital content has been divided into
a plurality of shreds, wherein each shred is a subset of
the digital content, the subset having a predetermined
size, and wherein each shred has been encrypted to
form a piece of the shredded and encrypted digital
content, wherein the pieces of shredded and encrypted
digital content are organized into a plurality of records
that hold the shredded and encrypted digital content in
a database associated with a server computer system.

2. The method of claim 1, wherein manipulating text with
a word processing module comprises:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital

content to obtain text;

displaying the text with a WYSIWYG type display;

writing the text;

editing the text;

checking the text with a spell checker; and

storing the text into a database as shredded and encrypted

digital content.

3. The method of claim 2, wherein manipulating numeric
and text values with a spreadsheet module comprises:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital
content to obtain numeric and text values;

displaying the numeric and text values witha WYSIWYG

type display;

performing various arithmetic calculations using the

numeric values;

displaying the results of these various arithmetic calcu-

lations on the display; and

storing the numeric and text values into a database as

shredded and encrypted digital content.

4. The method of claim 1, further comprising manipulat-
ing photos with a photo management module, wherein the
manipulating photos with the photo management module
comprises:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital

content to obtain one or more photos;

displaying the one or more photos in an array;

rotating the photos;

resizing the photos;

cropping the photos; and

storing the photos into a database as shredded and

encrypted digital content.

US 7,237,268 B2

57

5. The method of claim 1, wherein manipulating messages
between users with a messaging module comprises:

sending messages from a first user; and

receiving messages by second user.

6. The method of claim 5, wherein the sending of mes-
sages is in the form of text, graphic, audio, video, audio-
video data.

7. The method of claim 1, further comprising manipulat-
ing digital content to be posted for use by multiple users with
a bulletin board module, wherein the manipulating of digital
content to be posted for use by multiple users with the
bulletin board module comprises:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital

content to obtain one or more messages;

posting the messages to a computer bulletin board; and

grouping these messages according to the content of the

messages.
8. The method of claim 7, wherein manipulating digital
content to be posted for use by multiple users with a bulletin
board module comprises modifying fonts, color, or graphics
of the message posted on the bulletin board.
9. The method of claim 7, wherein manipulating digital
content to be posted for use by multiple users with a bulletin
board module comprises posting audio digital content.
10. The method of claim 7, wherein manipulating digital
content to be posted for use by multiple users with a bulletin
board module comprises posting audio-video digital content.
11. The method of claim 7, wherein manipulating digital
content to be posted for use by multiple users with a bulletin
board module comprises posting video digital content.
12. The method of claim 1, further comprising accessing
the shredded and encrypted digital content from a database
in a server computer, and transmitting the shredded and
encrypted digital content between the server computer and a
client computer.
13. Computer-readable media having executable instruc-
tions stored thereon for causing a suitable programmed
central processor unit to perform a method comprising:
manipulating shredded and encrypted digital content in
the form of text with a word processing module;

manipulating shredded and encrypted digital content in
the form of numeric values and text with a spreadsheet
module;

manipulating shredded and encrypted digital content in

the form of messages between users with a messaging
module; and

wherein the digital content has been divided into a plu-

rality of shreds, wherein each shred is a subset of the
digital content, and wherein each shred has been
encrypted to form a piece of the shredded and
encrypted digital content, wherein the pieces of shred-
ded and encrypted digital content are organized into a
plurality of records that hold the shredded and
encrypted digital content in a database associated with
a server computer system.

14. The computer-readable media of claim 13, further
comprising instructions for a word processing module to
manipulate shredded and encrypted digital content in the
form of text through:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital

content to obtain text;

displaying the text with a WYSIWYG type display;

writing the text;

editing the text; and

checking the text with a spell checker; and

58

storing the text into a database as shredded and encrypted
digital content.
15. The computer-readable media of claim 13, further
comprising instructions for a spreadsheet module to manipu-
5 late shredded and encrypted digital content in the form of
numeric and text values through:
receiving shredded and encrypted digital content;
decrypting the received shredded and encrypted digital
content to obtain numeric and text values;

10 displaying the numeric and text values witha WYSIWYG
type display;
performing various arithmetic calculations using the
numeric values;
displaying the results of these various arithmetic calcu-
15 lations on the display; and

storing the numeric and text values into a database as

shredded and encrypted digital content.

16. The computer-readable media of claim 13, further
comprising instructions for a photo management module to
manipulate shredded and encrypted digital content in the
form of photos through:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital

content to obtain one or more photos;

displaying the one or more photos in an array;

rotating the photos;

resizing the photos;

cropping the photos; and

storing the photos into a database as shredded and

encrypted digital content.

17. The computer-readable media of claim 13, further
comprising instructions for a messaging module to manipu-
late shredded and encrypted digital content in the form of
text, graphic, audio, video or audio/video data.

18. The computer-readable media of claim 13, further
comprising instructions for a messaging module to manipu-
late shredded and encrypted digital content in the form of
text, graphic, audio, video or audio/video data through:

sending messages from a first user; and

receiving messages by second user.

19. The computer-readable media of claim 13, further
comprising instructions for a bulletin board module to
manipulate shredded and encrypted digital content in the
form of text through:

receiving shredded and encrypted digital content;

decrypting the received shredded and encrypted digital

content to obtain one or more messages;

posting the messages to a computer bulletin board; and

grouping the messages according to the content of the

messages.

20. The computer-readable media of claim 19, further
comprising instructions for a bulletin board module to
manipulate shredded and encrypted digital content in the
form of text comprises modifying the text fonts, color, or
55 graphics.

21. The computer-readable media of claim 19, further
comprising instructions for a bulletin board module to
manipulate shredded and encrypted digital content in the
form of audio digital content posted to a computer bulletin

60 board.

22. The computer-readable media of claim 19, further
comprising instructions for a bulletin board module to
manipulate shredded and encrypted digital content in the
form of audio-video digital content posted to a computer

65 bulletin board.

23. The computer-readable media of claim 19, further

comprising instructions for a bulletin board module to

20

25

30

35

40

45

50

US 7,237,268 B2

59
manipulate shredded and encrypted digital content in the
form of video digital content posted to a computer bulletin
board.

24. The computer-readable media of claim 19, further
comprising instructions for accessing the shredded and
encrypted digital content from a database in a server com-
puter, and transmitting the shredded and encrypted digital
content between the server computer and a client computer.

25. An apparatus for handling shredded and encrypted
digital content comprising:

a plurality of applications including a word processing
module, a spreadsheet module, and a messaging mod-
ule;

means for manipulating digital content in the form of text
with the word processing module;

means for manipulating digital content in the form of
numeric values and text with a spreadsheet module;

means for manipulating digital content in the form of
messages between users with a messaging module; and

10

15

60

wherein each of the digital content has been divided into
a plurality of shreds, wherein each shred is a subset of
the digital content, the subset having a predetermined
size, and wherein each shred has been encrypted to
form a piece of the shredded and encrypted digital
content, wherein the pieces of shredded and encrypted
digital content are organized into a plurality of records
that hold the shredded and encrypted digital content in
a database associated with a server computer system.

26. An apparatus of claim 25, further comprising:

means for receiving shredded and encrypted digital con-
tent;

means for decrypting the received shredded and encrypted
digital content to obtain decrypted digital content; and

means for forwarding the decrypted digital content to one
or more of the plurality of applications.

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

